数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0,n∈N.(1)求数列{an}的通项;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学

题目简介

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0,n∈N.(1)求数列{an}的通项;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学

题目详情

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0,n∈N.
(1)求数列{an}的通项;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
题型:解答题难度:中档来源:不详

答案

(1)由题意,an+2-an+1=an+1-an,
∴数列{an}是以8为首项,-2为公差的等差数列
∴an=10-2n,n∈N
(2)(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an.
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn.
Sn=
-n2+9nn≤5
n2-9n+40n≥6
,n∈N

更多内容推荐