数列{an}的前n项和为Sn,a1=2,Sn=12an+1-1(n∈N*).(Ⅰ)求a2,a3;(Ⅱ)求数列{an}的通项an;(Ⅲ)求数列{nan}的前n项和Tn.-高二数学

题目简介

数列{an}的前n项和为Sn,a1=2,Sn=12an+1-1(n∈N*).(Ⅰ)求a2,a3;(Ⅱ)求数列{an}的通项an;(Ⅲ)求数列{nan}的前n项和Tn.-高二数学

题目详情

数列{an}的前n项和为Sn,a1=2,Sn=
1
2
an+1-1
(n∈N*).
(Ⅰ)求a2,a3
(Ⅱ)求数列{an}的通项an
(Ⅲ)求数列{nan}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵a1=2,Sn=class="stub"1
2
an+1-1
(n∈N*),
∴当n=1时,S1=class="stub"1
2
a2-1=a1=2

解得a2=6.
当n=2时,S2=class="stub"1
2
a3-1=2+6=8

解得a3=18.
(Ⅱ)∵a1=2,Sn=class="stub"1
2
an+1-1
(n∈N*),
∴当n≥2时,Sn=class="stub"1
2
an+1-1
Sn-1=class="stub"1
2
an-1

an=Sn-Sn-1=class="stub"1
2
an+1-class="stub"1
2
an

即an+1=3an.
对于a2=3a1也满足上式,
∴数列{an}是首项为2,公比为3的等比数列,
an=2•3n-1(n∈N*)
( III)∵an=2•3n-1(n∈N*)
nan=2n•3n-1
Tn=2•1+4•3+6•32+8•33+…+2n•3n-1
3Tn=2•3+4•32+6•33+8•34+…+2n•3n
相减得,-2Tn=2(1+3+32+33+…+3n-1)-2n•3n
=2•
1-3n
1-3
-2n•3n

=3n-1-2n•3n,
Tn=
(2n-1)•3n+1
2

更多内容推荐