已知两个数列{Sn}、{Tn}分别:当n∈N*,Sn=1-12+13-14+…+12n-1-12n,Tn=1n+1+1n+2+1n+3+…+12n.(1)求S1,S2,T1,T2;(2)猜想Sn与Tn

题目简介

已知两个数列{Sn}、{Tn}分别:当n∈N*,Sn=1-12+13-14+…+12n-1-12n,Tn=1n+1+1n+2+1n+3+…+12n.(1)求S1,S2,T1,T2;(2)猜想Sn与Tn

题目详情

已知两个数列{Sn}、{Tn}分别:
当n∈N*,Sn=1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
,Tn=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(1)求S1,S2,T1,T2
(2)猜想Sn与Tn的关系,并用数学归纳法证明.
题型:解答题难度:中档来源:不详

答案

(1)S1=1-class="stub"1
2
=class="stub"1
2
,S2=1-class="stub"1
2
+ class="stub"1
3
-class="stub"1
4
=class="stub"7
12

T1=class="stub"1
1+1
=class="stub"1
2
,T2=class="stub"1
2+1
+class="stub"1
2+2
=class="stub"7
12
(2分)
(2)猜想:Sn=Tn(n∈N*),即:
1-class="stub"1
2
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
2n-1
-class="stub"1
2n
=class="stub"1
n+1
+class="stub"1
n+2
+class="stub"1
n+3
+…+class="stub"1
2n

(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-class="stub"1
2
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
2k-1
-class="stub"1
2k
=class="stub"1
k+1
+class="stub"1
k+2
+class="stub"1
k+3
+…+class="stub"1
2k
(8分)
则:Sk+1=Sk+class="stub"1
2k+1
-class="stub"1
2(k+1)
=Tk+class="stub"1
2k+1
-class="stub"1
2(k+1)
(10分)
=class="stub"1
k+1
+class="stub"1
k+2
+class="stub"1
k+3
+…+class="stub"1
2k
+class="stub"1
2k+1
-class="stub"1
2(k+1)
(11分)
=class="stub"1
k+2
+class="stub"1
k+3
+…+class="stub"1
2k+1
+(class="stub"1
k+1
-class="stub"1
2(k+1)
)

=class="stub"1
(k+1)+1
+class="stub"1
(k+1)+2
+…+class="stub"1
2k+1
+class="stub"1
2(k+1)
=Tk+1,
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)

更多内容推荐