已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn=S1+S2+L+Sn,求Tn的表达式;(3)记Cn=23(an+12)

题目简介

已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn=S1+S2+L+Sn,求Tn的表达式;(3)记Cn=23(an+12)

题目详情

已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*
(1)求证:数列{an+
1
2
}为等比数列;
(2)记Tn=S1+S2+L+Sn,求Tn的表达式;
(3)记Cn=
2
3
(an+
1
2
),求数列{nCn}的前n项和Pn
题型:解答题难度:中档来源:不详

答案

(1)∵3an=2Sn+n,
∴a1=1,
当n≥2时,3(an-an-1)=2an+1,即an=3an-1+1,
∴an+class="stub"1
2
=3an-1+1+class="stub"1
2
=3(an-1+class="stub"1
2
),
∴数列{an+class="stub"1
2
}是首项为class="stub"3
2
,公比为3的为等比数列;
(2)由(1)知,an+class="stub"1
2
=class="stub"3
2
•3n-1,
∴an=class="stub"1
2
×3n-class="stub"1
2

∴Sn=a1+a2+…+an
=class="stub"1
2
3(1-3n)
1-3
-class="stub"n
2

=class="stub"3
4
•3n-class="stub"1
4
(2n+3),
∴Tn=S1+S2+…+Sn
=class="stub"3
4
(3+32+…+3n)-class="stub"1
4
×
(5+2n+3)n
2

=class="stub"3
4
3(1-3n)
1-3
-
n(n+4)
4

=class="stub"9
8
(3n-1)-
n(n+4)
4

(3)∵Cn=class="stub"2
3
(an+class="stub"1
2
)=class="stub"2
3
×class="stub"1
2
×3n=3n-1,
∴Pn=1×30+2×3+3×32+…+n•3n-1,
∴3Pn=1×3+2×32+…+(n-1)•3n-1+n•3n,
两式相减得:
-2Pn=1+3+32+…+3n-1-n•3n
=
1-3n
1-3
-n•3n
=class="stub"1-2n
2
×3n-class="stub"1
2

∴Pn=
1+(2n-1)•3n
4

更多内容推荐