已知等比数列{an}各项都是正数,a1=3,a1+a2+a3=21,Sn为{an}的前n项和,(Ⅰ)求通项an及Sn;(Ⅱ)设{bn-an}是首项为1,公差为3的等差数列,求数列{bn}的通项公式及其

题目简介

已知等比数列{an}各项都是正数,a1=3,a1+a2+a3=21,Sn为{an}的前n项和,(Ⅰ)求通项an及Sn;(Ⅱ)设{bn-an}是首项为1,公差为3的等差数列,求数列{bn}的通项公式及其

题目详情

已知等比数列{an}各项都是正数,a1=3,a1+a2+a3=21,Sn为{an}的前n项和,
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公差为3的等差数列,求数列{bn}的通项公式及其前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)设等比数列{an}的公比为q,则q>0,
代入已知可得3+3q+3q2=21,解得q=2,或q=-3(舍去),
故an=3×2n-1,Sn=
3(1-2n)
1-2
=3×2n-1-3;
(Ⅱ)∵{bn-an}是首项为1,公差为3的等差数列,
∴bn-an=1+3(n-1)=3n-2,即bn=3×2n-1+3n-2
故Tn=3(1+2+22+…+2n-1)+(1+4+7+…+3n-2)
=
3(1-2n)
1-2
+
n(1+3n-2)
2
=3×2n-3+
3n2-n
2

更多内容推荐