在等差数列{an}中,a1=1,a5=9,在数列{bn}中,b1=2,且bn=2bn-1-1,(n≥2)(1)求数列{an}和{bn}的通项公式;(2)设Tn=a1b1-1+a2b2-1+a3b3-1

题目简介

在等差数列{an}中,a1=1,a5=9,在数列{bn}中,b1=2,且bn=2bn-1-1,(n≥2)(1)求数列{an}和{bn}的通项公式;(2)设Tn=a1b1-1+a2b2-1+a3b3-1

题目详情

在等差数列{an}中,a1=1,a5=9,在数列{bn}中,b1=2,且bn=2bn-1-1,(n≥2)
(1)求数列{an}和{bn}的通项公式;
(2)设Tn=
a1
b1-1
+
a2
b2- 1
+
a3
b3-1
+…+
an
bn-1
,求Tn
题型:解答题难度:中档来源:不详

答案

(1)由等差数列的通项公式可得,d=
a5-a1
5-1
=2
∴an=1+2(n-1)=2n-1     
 由bn=2bn-1-1可得bn-1=2(bn-1-1)(n≥2)
∴{bn-1}是以b1-1=1为首项,2为公比的等比数列
∴bn-1=2n-1  
  故bn=2n-1+1
(2)Tn=
a1
b1-1
+
a2
b2-1
+…+
an
bn-1
=class="stub"2-1
20
+class="stub"2×2-1
22-1
+…+class="stub"2n-1
2n-1

=1+class="stub"3
2
+class="stub"5
4
+…+class="stub"2n-3
2n-2
+class="stub"2n-1
2n-1
         ①
则 class="stub"1
2
Tn=class="stub"1
2
+class="stub"3
4
+class="stub"5
8
+…+class="stub"2n-3
2n-1
+class="stub"2n-1
2n
 ②
①-②可得class="stub"1
2
Tn
=1+2(class="stub"1
2
+class="stub"1
2 2
+…+class="stub"1
2 n-1
)
-class="stub"2n-1
2n

=1+2×
class="stub"1
2
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
-class="stub"2n-1
2n

=1+2-(class="stub"1
2
)
n-2
-(2n-1)(class="stub"1
2
)
n

=3-(class="stub"1
2
)
n
[4+(2n-1)]
=3-(2n+3)(class="stub"1
2
)
n

所以Tn=6-class="stub"2n+3
2n-1

更多内容推荐