已知数列{an}的前n项和为Sn=n+12an(n∈N*),且a1=2.数列{bn}满足b1=0,b2=2,bn+1bn=2nn-1,n=2,3,….(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{bn

题目简介

已知数列{an}的前n项和为Sn=n+12an(n∈N*),且a1=2.数列{bn}满足b1=0,b2=2,bn+1bn=2nn-1,n=2,3,….(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{bn

题目详情

已知数列{an}的前n项和为 Sn=
n+1
2
an
(n∈N*),且a1=2.数列{bn}满足b1=0,b2=2,
bn+1
bn
=
2n
n-1
,n=2,3,….
(Ⅰ)求数列 {an} 的通项公式;
(Ⅱ)求数列 {bn} 的通项公式;
(Ⅲ)证明:对于 n∈N*
2b1
a1
+
2b2
a2
+…+
2bn
an
2n-1-1
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵Sn=class="stub"n+1
2
an
,∴2Sn=(n+1)an①,∴2Sn+1=(n+2)an+1②,
∴①-②可得2an+1=(n+2)an+1-(n+1)an,
an+1
an
=class="stub"n+1
n

当n≥2时,an=a1×
a2
a1
×…×
an
an-1
=2n

∵a1=2
∴数列 {an} 的通项公式为an=2n;
(Ⅱ)∵b1=0,b2=2,
bn+1
bn
=class="stub"2n
n-1
,n≥2,
∴n≥3时,bn=b2×
b3
b2
×…×
bn
bn-1
=2n-1(n-1)

b1=0,b2=2满足上式,
∴数列 {bn} 的通项公式为bn=2n-1(n-1)
(Ⅲ)证明:
2bk
ak
=2k-1(1-class="stub"1
k
)

当k≥2时,1-class="stub"1
k
≥ 1-class="stub"1
2
=class="stub"1
2

2bk
ak
=2k-1(1-class="stub"1
k
)≥2k-2

∵b1=0,
2b1
a1
+
2b2
a2
+…+
2bn
an
0+1+2+…+2n-2
=
2n-1-1
2-1
=2n-1-1
∴对于n∈N*,
2b1
a1
+
2b2
a2
+…+
2bn
an
2n-1-1

更多内容推荐