等差数列{an}前n项和为Sn,且S5=45,S6=60.(1)求{an}的通项公式an;(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{1bn}的前n项和Tn.-数学

题目简介

等差数列{an}前n项和为Sn,且S5=45,S6=60.(1)求{an}的通项公式an;(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{1bn}的前n项和Tn.-数学

题目详情

等差数列{an}前n项和为Sn,且S5=45,S6=60.
(1)求{an}的通项公式an
(2)若数列{an}满足bn+1-bn=an(n∈N*)且b1=3,求{
1
 bn
}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(1)设等差数列{an}的公差为d,∵S5=45,S6=60,∴
5a1+class="stub"5×4
2
d=45
6a1+class="stub"6×5
2
d=60
,解得
a1=5
d=2
.∴an=5+(n-1)×2=2n+3.
(2)∵bn+1-bn=an=2n+1,b1=3,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3
=
n(n-1)
2
+3n

=n2+2n.
class="stub"1
bn
=class="stub"1
n(n+2)
=class="stub"1
2
(class="stub"1
n
-class="stub"1
n+2
)

∴Tn=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
2
-class="stub"1
4
)+(class="stub"1
3
-class="stub"1
5
)+
…+(class="stub"1
n-1
-class="stub"1
n+1
)+(class="stub"1
n
-class="stub"1
n+2
)]

=class="stub"1
2
(1+class="stub"1
2
-class="stub"1
n+1
-class="stub"1
n+2
)

=class="stub"3
4
-class="stub"1
2(n+1)
-class="stub"1
2(n+2)

更多内容推荐