设等差数列{an}的前n项和为Sn,若a11-a8=3,S11-S8=3,则使an>0的最小正整数n的值是()A..8B..9C.10D..11-数学

题目简介

设等差数列{an}的前n项和为Sn,若a11-a8=3,S11-S8=3,则使an>0的最小正整数n的值是()A..8B..9C.10D..11-数学

题目详情

设等差数列{an}的前n项和为Sn,若a11-a8=3,S11-S8=3,则使an>0的最小正整数n的值是(  )
A..8B..9C.10D..11
题型:单选题难度:偏易来源:不详

答案

∵a11-a8=3d=3,∴d=1,
∵S11-S8=a11+a10+a9=3a1+27d=3,
∴a1=-8,
∴an=-8+(n-1)>0,
解得n>9,
因此最小正整数n的值是10.
故选C.

更多内容推荐