已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.(Ⅰ)求实数a、b的值及函数f(x)的单调区间;(Ⅱ)若当x∈[-12,e-1]时,不等式f(x)<m恒成立,求实数m的取值范

题目简介

已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.(Ⅰ)求实数a、b的值及函数f(x)的单调区间;(Ⅱ)若当x∈[-12,e-1]时,不等式f(x)<m恒成立,求实数m的取值范

题目详情

已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.
(Ⅰ)求实数a、b的值及函数f(x)的单调区间;
(Ⅱ)若当x∈[-
1
2
,e-1]
时,不等式f(x)<m恒成立,求实数m的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)x+1>0得 f(x)的定义域为(-1,+∞)f′(x)=2x+a-class="stub"2
x+1

∵函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.
∴f(0)=1,f'(0)=0∴a=2,b=1…(5分)
∴f(x)=x2+2x+1-2ln(x+1)
f(x)=2(1+x)-class="stub"2
1+x
=2[(1+x)-class="stub"1
1+x
]>0
x2+2x
1+x
>0
⇒x>0
f(x)=2(1+x)-class="stub"2
1+x
=2[(1+x)-class="stub"1
1+x
]>0
x2+2x
1+x
<0
⇒-1<x<0,
所以f(x)的单调增区间为(0,+∞);单调减区间(-1,0).         …(10分)
(Ⅱ)当x∈[-class="stub"1
2
,e-1]
时,不等式f(x)<m恒成立,求实数m的取值范围.
令f′(x)=0⇒(1+x)2=1⇒x=0或x=-2(舍)f(-class="stub"1
2
)=class="stub"1
4
+2ln2
,f(0)=1,f(e-1)=e2-2>f(-class="stub"1
2
)

∴当x∈[-class="stub"1
2
,e-1]
时,f(x)max=f(e-1)=e2-2
因此可得:不等式f(x)<m恒成立时,m>e2-2…(15分)

更多内容推荐