已知函数f(x)=alnx+x2(a为实常数),(1)若a=-2,求函数f(x)的单调递增区间;(2)当a<-2时,求函数f(x)在[1,e]上的最小值及相应的x值;(3)若存在x∈[1,e],使得f

题目简介

已知函数f(x)=alnx+x2(a为实常数),(1)若a=-2,求函数f(x)的单调递增区间;(2)当a<-2时,求函数f(x)在[1,e]上的最小值及相应的x值;(3)若存在x∈[1,e],使得f

题目详情

已知函数f(x)=alnx+x2(a为实常数),
(1)若a=-2,求函数f(x)的单调递增区间;
(2)当a<-2时,求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求a的取值范围.
题型:解答题难度:中档来源:上饶模拟

答案

(1)a=-2,f(x)=-2lnx+x2,
f′(x)=-class="stub"2
x
+2x=
2(x2-1)
x

令f'(x)>0,由x>0得x>1,
∴f(x)的单调递增区间是(1,+∞).(2分)
(2)f′(x)=class="stub"a
x
+2x=
2(x2+class="stub"a
2
)
x

令f'(x)=0,由a<-2,x>0得x=
-class="stub"a
2
>1
(3分)
①当
-class="stub"a
2
<e
,即-2e2<a<-2时,f(x)在[1,
-class="stub"a
2
]
递减,在[
-class="stub"a
2
,e]
递增,
∴当x=
-class="stub"a
2
时,f(x)min=aln
-class="stub"a
2
-class="stub"a
2
.(5分)
②当
-class="stub"a
2
≥e
,即a≤-2e2时,f(x)在[1,e]递减,
∴当x=e时,f(x)min=a+e2.(7分)
(3)f(x)≤(a+2)x化为:alnx+x2-(a+2)x≤0,
设g(x)=alnx+x2-(a+2)x,据题意,
当x∈[1,e]时,g(x)min≤0,g′(x)=class="stub"a
x
+2x-(a+2)=
(2x-a)(x-1)
x
=
2(x-class="stub"a
2
)(x-1)
x
,(9分)
(ⅰ)当class="stub"a
2
≤1
即a≤2时,当x∈[1,e]时,g'(x)≥0,∴g(x)递增,
∴g(x)min=g(1)=-1-a≤0,∴a≥-1,
∴-1≤a≤2;(11分)
(ⅱ)当1<class="stub"a
2
<e
即2<a<2e时,g(x)在[1,class="stub"a
2
]
递减,[class="stub"a
2
,e]
递增,
g(x)min=g(class="stub"a
2
)=a(lnclass="stub"a
2
-class="stub"a
4
-1)

lnclass="stub"a
2
<1
,∴g(x)min<0,
∴2<a<2e符合题意;(13分)
(ⅲ)当class="stub"a
2
≥e
即a≥2e时,g(x)在[1,e]递减,
∴g(x)min=g(e)=a+e2-(a+2)e=(1-e)a+e2-2e≤2e(1-e)+e2-2e=-e2<0,符合题意,(15分)
综上可得,a的取值范围是[-1,+∞).(16分)

更多内容推荐