在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,求证△ABC为等边三角形.-数学

题目简介

在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,求证△ABC为等边三角形.-数学

题目详情

在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,求证△ABC为等边三角形.
题型:解答题难度:中档来源:不详

答案

由A,B,C成等差数列,有2B=A+C(1)
因为A,B,C为△ABC的内角,所以A+B+C=π.
由(1)(2)得B=class="stub"π
3
.(3)
由a,b,c成等比数列,有b2=ac(4)
由余弦定理及(3),可得b2=a2+c2-2accosB=a2+c2-ac
再由(4),得a2+c2-ac=ac,
即(a-c)2=0
因此a=c
从而A=C(5)
由(2)(3)(5),得A=B=C=class="stub"π
3

所以△ABC为等边三角形.

更多内容推荐