设函数f(x)=e2x2+1x,g(x)=e2xex,对任意x1、x2∈(0,+∞),不等式g(x1)k≤f(x2)k+1恒成立,则正数k的取值范围是______.-数学

题目简介

设函数f(x)=e2x2+1x,g(x)=e2xex,对任意x1、x2∈(0,+∞),不等式g(x1)k≤f(x2)k+1恒成立,则正数k的取值范围是______.-数学

题目详情

设函数f(x)=
e2x2+1
x
,g(x)=
e2x
ex
,对任意x1、x2∈(0,+∞),不等式
g(x1)
k
f(x2)
k+1
恒成立,则正数k的取值范围是______.
题型:填空题难度:偏易来源:不详

答案

∵当x>0时,f(x)=
e2x2+1
x
=e2x+class="stub"1
x
≥2
e2x•class="stub"1
x
=2e
∴x1∈(0,+∞)时,函数f(x1)有最小值2e
g(x)=
e2x
ex

g(x)=
e2(ex-xex)
e2x
=
e2(1-x)
ex

当x<1时,g′(x)>0,则函数g(x)在(0,1)上单调递增
当x>1时,g′(x)<0,则函数在(1,+∞)上单调递减
∴x=1时,函数g(x)有最大值g(1)=e
则有x1、x2∈(0,+∞),f(x1)min=2e>g(x2)max=e
g(x1)
k
f(x2)
k+1
恒成立且k>0
class="stub"e
k
≤class="stub"2e
k+1

∴k≥1
故答案为k≥1

更多内容推荐