函数f(x)=ax+bx2+1是定义在(-∞,+∞)上的奇函数,且f(12)=25.(1)求实数a,b,并确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)写出f(x)

题目简介

函数f(x)=ax+bx2+1是定义在(-∞,+∞)上的奇函数,且f(12)=25.(1)求实数a,b,并确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)写出f(x)

题目详情

函数f(x)=
ax+b
x2+1
是定义在(-∞,+∞)上的奇函数,且f(
1
2
)=
2
5

(1)求实数a,b,并确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(不需说明理由)
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)是奇函数,∴f(-x)=f(x),即 class="stub"ax+b
x2+1
=-class="stub"-ax+b
x2+1
,∴b=0.  …(2分)
∵f(class="stub"1
2
)=class="stub"2
5
,∴a=1.
∴f(x)=class="stub"x
x2+1
. …(5分)
(2)任取-1<x1<x2<1,f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1

=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
.  …(7分)
∵-1<x1<x2<1,∴x1-x2<0,1-x1•x2>0,故 
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
<0,
故有f(x1)-f(x2)<0,f(x1)<f(x2),
∴f(x)在(-1,1)上是增函数. …(10分)
(3)单调减区间(-∞,-1],[1,+∞),…(12分)
当x=-1时有最小值-class="stub"1
2
,当x=1时有最大值class="stub"1
2
. …(14分)

更多内容推荐