在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a,当a<b时,a⊕b=b2.已知函数f(x)=(2⊕x)•x-(m⊕x)(m<2),若对任意x∈[-3,2],f(x)≥-5

题目简介

在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a,当a<b时,a⊕b=b2.已知函数f(x)=(2⊕x)•x-(m⊕x)(m<2),若对任意x∈[-3,2],f(x)≥-5

题目详情

在实数的原有运算法则中,我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=a,当a<b时,a⊕b=b2.已知函数f(x)=(2⊕x)•x-(m⊕x)(m<2),若对任意x∈[-3,2],f(x)≥-5恒成立,则实数m的取值范围是______(“•”“-”仍为通常的乘法与减法)
题型:填空题难度:偏易来源:不详

答案

当x=2时,
f(x)=(2⊕x)•x-(m⊕x)=8-4=4
对任意m<2均成立;
当x∈[-3,2)时,若x∈[-3,m],
则f(x)=(2⊕x)•x-(m⊕x)(m<2)
=2x-m,
若f(x)≥-5恒成立,则-6-m≥-5,解得m≤-1
若x∈(m,2),
则f(x)=(2⊕x)•x-(m⊕x)(m<2)
=2x-x2,
若f(x)≥-5恒成立,若f(x)≥-5恒成立,则2m-m2≥-5
1-
6
≤m≤1+
6

综上实数m的取值范围是 [1-
6
,-1]

故答案为:[1-
6
,-1]

更多内容推荐