已知y=f(x)是定义在[-1,1]上的奇函数,x∈[0,1]时,f(x)=4x+a4x+1.(Ⅰ)求x∈[-1,0)时,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;(Ⅱ)解不等式

题目简介

已知y=f(x)是定义在[-1,1]上的奇函数,x∈[0,1]时,f(x)=4x+a4x+1.(Ⅰ)求x∈[-1,0)时,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;(Ⅱ)解不等式

题目详情

已知y=f(x)是定义在[-1,1]上的奇函数,x∈[0,1]时,f(x)=
4x+a
4x+1

(Ⅰ)求x∈[-1,0)时,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
(Ⅱ)解不等式f(x)>
1
5
题型:解答题难度:中档来源:不详

答案

(1)∵y=f(x)为奇函数,
∴f(0)=0,
∴a=-1,当x∈[-1,0)时,-x∈(0,1]
∴f(x)=-f(-x)=
4x-1
4x+1

当x∈[-1,0)时,f(x)=1-class="stub"2
4x+1

∴y=f(x)在[0,1]上是增函数
f(x)max=f(1)=class="stub"3
5

(2)∵f(x)=
4x-1
4x+1
,x∈[-1,1].
4x-1
4x+1
>class="stub"1
5
,解得x∈(log4class="stub"3
2
,1]

更多内容推荐