对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-12.(1)求实数b,

题目简介

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-12.(1)求实数b,

题目详情

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
(b,c∈N*)
有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
1
an
)=1
,求数列{an}的通项公式;
(3)求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an
题型:解答题难度:中档来源:不详

答案

(1)设
x2+a
bx-c
=x
得:(1-b)x2+cx+a=0,由根与系数的关系,得:
2+0=-class="stub"c
1-b
2•0=class="stub"a
1-b

解得
a=0
b=1+class="stub"c
2
,代入解析式 f(x)=
x2
(1+class="stub"c
2
)x-c
,由 f(-2)=class="stub"-2
1+c
<-class="stub"1
2

得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,于是f(x)=
x2
2(x-1)
,(x≠1)

(2)由题设,知 4Sn
(class="stub"1
an
)
2
2(class="stub"1
an
-1)
=1
,所以,2Sn=an-an2①;
且an≠1,以n-1代n得:2Sn-1=an-1-an-12,②;
由①-②得:2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入①得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1;由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列,∴an=-n;
(3)由an=-n,知(1-class="stub"1
an
)an+1=(1+class="stub"1
n
)-(n+1)=(class="stub"n
n+1
)
n+1

(1-class="stub"1
an
)
an
=(1+class="stub"1
n
)-n=(class="stub"n
n+1
)n

当n=1时,(class="stub"n
n+1
)
n+1
=class="stub"1
4
(class="stub"n
n+1
)
n
=class="stub"1
2
(class="stub"n
n+1
)
n+1
<class="stub"1
e
(class="stub"n
n+1
)
n
成立.
假设n=k时,(class="stub"k
k+1
)k+1<class="stub"1
e
(class="stub"k
k+1
)
k
成立,
则当n=k+1时,(class="stub"k+1
k+2
)
k+2
<class="stub"1
e
(class="stub"k+1
k+2
)
k+1
成立.
所以,(1-class="stub"1
an
)an+1<class="stub"1
e
<(1-class="stub"1
an
)an

更多内容推荐