定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数、现有如下命题:①对给定的函数f(x),其承

题目简介

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数、现有如下命题:①对给定的函数f(x),其承

题目详情

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数、现有如下命题:
①对给定的函数f(x),其承托函数可能不存在,也可能有无数个;②g(x)=2x为函数f(x)=2x的一个承托函数;③定义域和值域都是R的函数f(x)不存在承托函数.
下列选项正确的是(  )
A.①B.②C.①③D.②③
题型:单选题难度:偏易来源:不详

答案

对于①,若f(x)=sinx,则g(x)=B(B<-1),
就是它的一个承托函数,且有无数个,再如y=tanx,y=lgx就没有承托函数,∴命题①正确、
对于②,∵当x=class="stub"3
2
时,g(class="stub"3
2
)
=3,f(class="stub"3
2
)
=2
2
=
8

∴f(x)<g(x),
∴g(x)=2x不是f(x)=2x的一个承托函数,故错误;
对于③如f(x)=2x+3存在一个承托函数y=2x+1,故错误;
故选A.

更多内容推荐