已知函数f(x)=(x+1)(x+a)x2为偶函数.(Ⅰ)求实数a的值;(Ⅱ)记集合E={y|y=f(x),x∈{-1,1,2}},λ=lg22+lg2lg5+lg5-14,判断λ与E的关系;(Ⅲ)当

题目简介

已知函数f(x)=(x+1)(x+a)x2为偶函数.(Ⅰ)求实数a的值;(Ⅱ)记集合E={y|y=f(x),x∈{-1,1,2}},λ=lg22+lg2lg5+lg5-14,判断λ与E的关系;(Ⅲ)当

题目详情

已知函数f(x)=
(x+1)(x+a)
x2
为偶函数.
(Ⅰ)求实数a的值;
(Ⅱ)记集合E={y|y=f(x),x∈{-1,1,2}},λ=lg22+lg2lg5+lg5-
1
4
,判断λ与E的关系;
(Ⅲ)当x∈[
1
m
1
n
]
(m>0,n>0)时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.
题型:解答题难度:中档来源:不详

答案

(I)∵函数f(x)=
(x+1)(x+a)
x2
为偶函数.
∴f(-x)=f(x)
(x+1)(x+a)
x2
=
(-x+1)(-x+a)
x2

∴2(a+1)x=0,
∵x为非零实数,
∴a+1=0,即a=-1
(II)由(I)得f(x)=
x2-1
x2

∴E={y|y=f(x),x∈{-1,1,2}}={0,class="stub"3
4
}
λ=lg22+lg2lg5+lg5-class="stub"1
4
=lg2•(lg2+lg5)+lg5-class="stub"1
4
=lg2+lg5-class="stub"1
4
=1-class="stub"1
4
=class="stub"3
4

∴λ∈E
(III)∵f′(x)=class="stub"2
x3
>0恒成立
f(x)=
x2-1
x2
[class="stub"1
m
,class="stub"1
n
]
上为增函数
又∵函数f(x)的值域为[2-3m,2-3n],
f(class="stub"1
m
)=
m2-1
m2
=2-3m
f(class="stub"1
n
)=
n2-1
n2
=2-3n

又∵class="stub"1
m
<class="stub"1
n
,m>0,n>0
∴m>n>0
解得m=
3+
5
2
,n=
3-
5
2
1-class="stub"1
4

更多内容推荐