已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤π2),最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数y=sin(2x+π3)图象所有的对称中心都在y=f(x)

题目简介

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤π2),最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数y=sin(2x+π3)图象所有的对称中心都在y=f(x)

题目详情

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)
,最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数y=sin(2x+
π
3
)
图象所有的对称中心都在y=f(x)图象的对称轴上.
(1)求f(x)的表达式;
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,求cos(x0-
π
3
)
的值;
(3)设
a
=(f(x-
π
6
),1)
b
=(1,mcosx)
x∈(0,
π
2
)
,若
a
b
+3≥0
恒成立,求实数m的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)依题意可知:A=2,T=π,y=sin(2x+class="stub"π
3
)
与f(x)相差class="stub"T
4
+kT,k∈Z
,即相差class="stub"π
4
+kπ,k∈Z

所以f(x)=Asin[2(x+class="stub"π
4
+kπ)+class="stub"π
3
]=Acos(2x+class="stub"π
3
)

f(x)=Asin[2(x-class="stub"π
4
+kπ)+class="stub"π
3
]=Acos(2x+class="stub"4π
3
)
(舍),
f(x)=2cos(2x+class="stub"π
3
)

(2)因为f(
x0
2
)=class="stub"3
2
(x0∈[-class="stub"π
2
,class="stub"π
2
])
,即cos(x0+class="stub"π
3
)=class="stub"3
4

因为x0+class="stub"π
3
∈[-class="stub"π
6
,class="stub"5π
6
]
,又cos(-class="stub"π
6
)=
3
2
>class="stub"3
4
,y=cosx在[-class="stub"π
6
,0]
单调递增,
所以x0+class="stub"π
3
∈[0,class="stub"π
2
]

所以sin(x0+class="stub"π
3
)=
1-(class="stub"3
4
)
2
=
7
4
,于是
cos(x0-class="stub"π
3
)=cos(x0+class="stub"π
3
-class="stub"2π
3
)=cos(x0+class="stub"π
3
)cosclass="stub"2π
3
+sin(x0+class="stub"π
3
)sinclass="stub"2π
3
=-class="stub"3
4
•class="stub"1
2
+
7
4
3
2
=
21
-3
8

(3)因为
a
=(f(x-class="stub"π
6
),1)
b
=(1,mcosx)
x∈(0,class="stub"π
2
)

a
b
+3=f(x-class="stub"π
6
)+mcosx+3=2cos2x+mcosx+3=4cos2x+mcosx+1

于是4cos2x+mcosx+1≥0,得m≥-4cosx-class="stub"1
cosx
对于x∈(0,class="stub"π
2
)
恒成立,
因为(-4cosx-class="stub"1
cosx
)max=-4

故m≥-4.

更多内容推荐