优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证明你的结论.-数学
已知函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证明你的结论.-数学
题目简介
已知函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证明你的结论.-数学
题目详情
已知函数f(x)=ax
3
+(a-1)x
2
+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证明你的结论.
题型:解答题
难度:中档
来源:不详
答案
f(x)在[-4,4]上是单调递减函数.
证明如下:函数f(x)的图象关于原点成中心对称,
则f(x)是奇函数,即f(-x)=-f(x)对于任意x的成立,
则有a(-x)3+(a-1)(-x)2+48(a-2)(-x)x+b=-[ax3+(a-1)x2+48(a-2)x+b]
必有a-1=0,b=0,
即a=1,b=0,
于是f(x)=x3-48x.
∴
f′
x
=3
x
2
-48
,
∴当
x∈(-4,4)∴f′
x
<0
,
所以f(x)在[-4,4]上是单调递减函数.
上一篇 :
已知f(x)是偶函数,它在(-∞,0]上是
下一篇 :
已知定义在R上的可导函数f(x)的
搜索答案
更多内容推荐
定义f[a,b]=12(|a-b|+a+b).若函数g(x)=x2-1,h(x)=x-1,则函数f[g(x),h(x)]的最小值是______.-数学
已知y=f(x)是定义在[-1,1]上的奇函数,x∈[0,1]时,f(x)=4x+a4x+1.(Ⅰ)求x∈[-1,0)时,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;(Ⅱ)解不等式
已知函数f(x)=loga(1+x)+loga(1-x)(a>0且a≠1)(1)判断函数y=f(x)的奇偶性,并说明理由.(2)求函数y=f(x)的值域.-数学
已知定义在R上奇函数f(x)满足f(1+x)=f(1-x)且f(x)在区间[-1,1]上单调递增,则函数f(x)在区间[1,3]上的()A.最大值是f(1),最小值是f(3)B.最大值是f(3),最小
已知定义在(-1,1)上的函数f(x)满足f(12)=1,且对任意x、y∈(-1,1)有f(x)-f(y)=f(x-y1-xy).(Ⅰ)判断f(x)在(-1,1)上的奇偶性,并加以证明.(Ⅱ)令x1=
定义在R上的函数f(x)满足f(x)=21-xx≤0f(x-1)-f(x-2),x>0.则f(-1)=______,f(33)=______.-数学
若f(n)为n2+1的各位数字之和(n∈N*).如:因为142+1=197,1+9+7=17,所以f(14)=17.记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(
对于每一个实数x,设函数f(x)是y=4x+1,y=x+2,y=-2x+4三个函数中的最小值,则f(x)的最大值是______.-数学
已知非零向量a、b,满足a⊥b,则函数f(x)=(ax+b)2(x∈R)是()A.既是奇函数又是偶函数B.非奇非偶函数C.奇函数D.偶函数-数学
设函数f(x)的定义域为R,若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为有界泛函.在函数①f(x)=-5x,②f(x)=x2,③f(x)=sin2x,④f(x)
已知函数f(x)=lnx-ax2-bx(a,b∈R),g(x)=2x-2x+1-lnx(I)当a=-1时,f(x)与g(x)在定义域上的单调性相反,求b的取值范围;(II)设x1,x2是函数y=f(x
某厂准备投资100万元生产A,B两种新产品,据测算,投产后的年收益,A产品是投入数的15,B产品则是投入数开平方后的2倍,设投入B产品的数为x2(0<x≤10)万元.(Ⅰ)设两种产品的总-数学
已知函数f(x)=x(lnx+m),g(x)=a3x3+x.(1)当m=-2时,求f(x)的单调区间;(2)若m=32时,不等式g(x)≥f(x)恒成立,求实数a的取值范围.-数学
已知函数f1(x)=mx4x2+16,f2(x)=(12)|x-m|,其中m∈R.(1)若0<m≤2,试判断函数f(x)=f1(x)+f2(x)(x∈[2,+∞))的单调性,并证明你的结论;(2)设函
设函数f(x)=x3-92x2+6x-a,(1)对于任意实数x,f'(x)≥m恒成立,求m的最大值;(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.-数学
已知函数f(x)=1x-log21+x1-x,求函数f(x)的定义域,并讨论它的奇偶性和单调性.-数学
若f(2x+1)=x2+1,则f(0)的值为______.-数学
设f(x)是R上的偶函数,且在[0,+∝]上单调增,则f(-2),f(-π),f(3)的大小顺序是______.-数学
定义在R上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=3x9x+1.(1)求f(x)在[-2,2]上的解析式;(2)判断f(x)在(0,2)上的单调性,并给予证明;(3)当λ为何值时
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2+6x+21)+f(y2-8y)<0恒成立,则x2+y2的取值范围是___
已知函数f(x)定义域为{x|x≠0,x∈R},对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2)且当x>1时f(x)>0,(1)求f(1)与f(-1)值;(2)求证:f(x)是偶
已知奇函数f(x)在[0,+∞)单调递增,则满足f(2x-1)<f(x2-x+1)的x的取值范围是()A.(-∞,1)∪(2,+∞)B.(-∞,-2)∪(-1,+∞)C.(1,2)D.(-2,-1)-
已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g
设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范围是()A.(9,49)B
下列说法中正确的命题代号为______.①f(x)为奇函数,则f(0)=0;②定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增
已知函数f(x)=(3a-1)x+4a(x<1)logax(x≥1)在R不是单调函数,则实数a的取值范围是______-数学
设函数f(x)的定义域为R,且f(x)是以3为周期的奇函数,f(1)>1,f(2)=loga2(a>0,且a≠1),则实数a的取值范围是()A.a>1B.0<a<1或a>2C.12<a<1D.0<a<
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-12.(1)求实数b,
已知函数f(x)=log21+x1-x,(x∈(-1,1).(1)判断f(x)的奇偶性,并证明;(2)判断f(x)在(-1,1)上的单调性,并证明.-数学
若f(x)=(x-1)3+1,则f(-5)+f(-4)+…+f(0)+…+f(7)的值为()A.10B.11C.12D.13-数学
(注:本题第(2)(3)两问只需要解答一问,两问都答只计第(2)问得分)已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))处的切线斜率为3(e为自然对数的底数).(1)求实数
已知函数f(x+1)为奇函数,函数f(x-1)为偶函数,且f(0)=2,则f(4)=______.-数学
若f(x)=-x2+2ax与g(x)=ax+2在区间[1,5]上都是减函数,则a的取值范围是______.-数学
若对任意的实数m,n,都有f(m)+f(n)=f(m+n),且f(1005)=2,则f(1)+f(3)+f(5)+…+f(2009)=______.-数学
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,给出下列命题:①f(3)=0;②f(-3)=0;③直线x=6是函数y=f(x)的图象的一条对称轴;④函数y=f(
已知函数f(x)=-x-x3,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值的符号一定是()。-高二数学
已知函数f(x)是定义在(-2,2)上的减函数,且为奇函数.使f(m)+f(2m-1)>0.求实数m的取值范围.-数学
甲、乙两水池某时段的蓄水量随时间变化而变化,甲水池蓄水量(百吨)与时间t(小时)的关系是:f(t)=2+sint,t∈[0,12],乙水池蓄水量(百吨)与时间t(小时)的关系是:g(t)=5-|t-6
证明函数:f(x)=4-x2|x+2|-2的奇偶性.-数学
已知f(x)=sin2x+2cosxf′(π4),则f′(π4)=______.-数学
已知二次函数f(x)的二次项系数为a,且不等式f(x)>2x的解集为(-1,3).(1)若函数g(x)=x,f(x)在区间(-∞,a3)内单调递减,求a的取值范围;(2)当a=-1时,证明方程f(x)
已知f(x)=x2+1,(x≤1)-2x+3,(x>1),则f[f(2)]=______.-数学
已知函数f(x)=x2+3x+2x(1)求使f(x)<0的x的集合.(2)若m<f(x)对x>0的所有实数恒成立,求m的取值范围.-数学
对于给定正数k,定fk(x)=f(x)(f(x)≤k)k(f(x)>k),设f(x)=ax2-2ax-a2+5a+2,对任意x∈R和任意a∈(-∞,0)恒有fk(x)=f(x),则()A.k的最大值为
函数f(x)=2x-ax的定义域为(0,1](a为实数).(1)当a=-2时,求函数y=f(x)的最小值;(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;(3)求函数y=f(x)在x∈(0
已知f(x)为偶函数,且f(2+x)=f(2﹣x),当﹣2≤x≤0时,f(x)=2x;若n∈N*,an=f(n),则a2009=[]A.2009B.﹣2009C.D.-高三数学
已知函数f(x)=a•2x-b2x+b是定义在R上的奇函数,其反函数的图象过点(13,1),若x∈(-1,1)时,不等式f-1(x)≥log21+xm恒成立,则实数m的取值范围为______.-数学
已知y=f(x)是奇函数,当x>0时,f(x)=x(1+x),当x<0时,f(x)应该等于[]A.-x(1-x)B.x(1-x)C.-x(1+x)D.x(1+x)-高一数学
已知实数x,y,z满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为______.-数学
已知函数f(x)=1(1-x)n+aln(x-1),其中n∈N*,a为常数.(Ⅰ)当n=2时,求函数f(x)的极值;(Ⅱ)当a=1时,证明:对任意的正整数n,当x≥2时,有f(x)≤x-1.-数学
返回顶部
题目简介
已知函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,4]上的单调性,并证明你的结论.-数学
题目详情
答案
证明如下:函数f(x)的图象关于原点成中心对称,
则f(x)是奇函数,即f(-x)=-f(x)对于任意x的成立,
则有a(-x)3+(a-1)(-x)2+48(a-2)(-x)x+b=-[ax3+(a-1)x2+48(a-2)x+b]
必有a-1=0,b=0,
即a=1,b=0,
于是f(x)=x3-48x.
∴f′
∴当x∈(-4,4)∴f′
所以f(x)在[-4,4]上是单调递减函数.