已知函数F(x)=3x-22x-1(x≠12)(1)求F(12011)+F(22011)+…+F(20102011);(2)已知数列{an}满足a1=2,an+1=F(an),求数列{an}的通项公式

题目简介

已知函数F(x)=3x-22x-1(x≠12)(1)求F(12011)+F(22011)+…+F(20102011);(2)已知数列{an}满足a1=2,an+1=F(an),求数列{an}的通项公式

题目详情

已知函数F(x)=
3x-2
2x-1
(x≠
1
2
)

(1)求F(
1
2011
)+F(
2
2011
)+…+F(
2010
2011
)

(2)已知数列{an}满足a1=2,an+1=F(an),求数列{an}的通项公式;
(3) 求证:a1a2a3…an
2n+1
题型:解答题难度:中档来源:双流县三模

答案

(1)因为F(x)+F(1-x)=class="stub"3x-2
2x-1
+
3(1-x)-2
2(1-x)-1
=3

所以由倒序相加可得:2[F(class="stub"1
2011
)+F(class="stub"2
2011
)+…+F(class="stub"2010
2011
)
]
=[F(class="stub"1
2011
)+F(class="stub"2010
2011
)]+…+[F(class="stub"2010
2011
)+F(class="stub"1
2011
)]
=3×2010=6030,
F(class="stub"1
2011
)+F(class="stub"2
2011
)+…+F(class="stub"2010
2011
)
=3015;
(2)由an+1=F(an),两边同时减去1,得an+1-1=
an-1
2an-1

所以class="stub"1
an+1-1
=
2an-1
an-1
=2+class="stub"1
an-1

{class="stub"1
an-1
}
是以2为公差、1为首项得等差数列.
所以class="stub"1
an-1
=2n-1
,由此an=class="stub"2n
2n-1

(3)因为(2n)2>(2n)2-1=(2n+1)(2n-1),
所以class="stub"2n
2n-1
>class="stub"2n+1
2n
,于是class="stub"2
1
>class="stub"3
2
,class="stub"4
3
>class="stub"5
4
,…,class="stub"2n
2n-1
>class="stub"2n+1
2n

所以a1a2an=
(a1a2an)2
=
class="stub"2
1
•class="stub"2
1
•class="stub"4
3
•class="stub"4
3
…class="stub"2n
2n-1
•class="stub"2n
2n-1

class="stub"2
1
•class="stub"3
2
•class="stub"4
3
…class="stub"2n
2n-1
•class="stub"2n+1
2n
=
2n+1

更多内容推荐