已知函数f(x)=sin(54π-x)-cos(π4+x)(Ⅰ)求f(x)的单调递增区间;(Ⅱ)已知cos(α-β)=35,cos(α+β)=-35,0<α<β≤π2,求f(β).-数学

题目简介

已知函数f(x)=sin(54π-x)-cos(π4+x)(Ⅰ)求f(x)的单调递增区间;(Ⅱ)已知cos(α-β)=35,cos(α+β)=-35,0<α<β≤π2,求f(β).-数学

题目详情

已知函数f(x)=sin(
5
4
π-x)-cos(
π
4
+x)

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)已知cos(α-β)=
3
5
,cos(α+β)=-
3
5
,0<α<β≤
π
2
,求f(β).
题型:解答题难度:中档来源:泰安二模

答案

(Ⅰ)∵函数f(x)=sin(class="stub"5
4
π-x)-cos(class="stub"π
4
+x)
=sin(x-class="stub"π
4
)-cos(x+class="stub"π
4

=2sin(x-class="stub"π
4
).
令 2kπ-class="stub"π
2
≤x-class="stub"π
4
≤2kπ+class="stub"π
2
,k∈z,求得 2kπ-class="stub"π
4
≤x≤2kπ+class="stub"3π
4
,k∈z,
故函数的增区间为[2kπ-class="stub"π
4
,2kπ+class="stub"3π
4
],k∈z.
(Ⅱ)已知cos(α-β)=class="stub"3
5
,cos(α+β)=-class="stub"3
5
,0<α<β≤class="stub"π
2

∴sin(α-β)=-class="stub"4
5
,sin(α+β)=class="stub"4
5

∴cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sinα+β)sin(α-β)=-class="stub"9
25
+(-class="stub"16
25
)=-1,
∴2β=π,∴f(β)=2sin(β-class="stub"π
4
)=2sinclass="stub"π
4
=
2

更多内容推荐