设a为锐角,若cos(a+π6)=45,则sin(2a+π12)的值为______.-数学

题目简介

设a为锐角,若cos(a+π6)=45,则sin(2a+π12)的值为______.-数学

题目详情

设a为锐角,若cos(a+
π
6
)=
4
5
,则sin(2a+
π
12
)的值为______.
题型:填空题难度:中档来源:江苏

答案

∵a为锐角,cos(a+class="stub"π
6
)=class="stub"4
5

∴a+class="stub"π
6
也是锐角,且sin(a+class="stub"π
6
)=
1-cos2(a+class="stub"π
6
)
=class="stub"3
5

∴cosa=cos[(a+class="stub"π
6
)-class="stub"π
6
]=class="stub"4
5
cosclass="stub"π
6
+class="stub"3
5
sinclass="stub"π
6
=
4
3
+3
10

sina=sin[(a+class="stub"π
6
)-class="stub"π
6
]=class="stub"3
5
cosclass="stub"π
6
-class="stub"4
5
sinclass="stub"π
6
=
3
3
-4
10

由此可得sin2a=2sinacosa=
24-7
3
50
,cos2a=cos2a-sin2a=
7+24
3
50

又∵sinclass="stub"π
12
=sin(class="stub"π
3
-class="stub"π
4
)=
6
-
2
4
,cosclass="stub"π
12
=cos(class="stub"π
3
-class="stub"π
4
)=
6
+
2
4

∴sin(2a+class="stub"π
12
)=sin2acosclass="stub"π
12
+cosasinclass="stub"π
12
=
24-7
3
50
6
+
2
4
+
7+24
3
50
6
-
2
4
=
17
2
50

故答案为:
17
2
50

更多内容推荐