已知函数f(x)=73sinxcosx+7sin2x-52,x∈R.(Ⅰ)若f(x)的单调区间(用开区间表示);(Ⅱ)若f(a2-π6)=1+43,f(a2-5π12)=2,求sin(a2-π3)的值

题目简介

已知函数f(x)=73sinxcosx+7sin2x-52,x∈R.(Ⅰ)若f(x)的单调区间(用开区间表示);(Ⅱ)若f(a2-π6)=1+43,f(a2-5π12)=2,求sin(a2-π3)的值

题目详情

已知函数f(x)=7
3
sinxcosx+7sin2x-
5
2
,x∈R.
(Ⅰ)若f(x)的单调区间(用开区间表示);
(Ⅱ)若f(
a
2
-
π
6
)=1+4
3
,f(
a
2
-
12
)=2,求sin(
a
2
-
π
3
)的值.
题型:解答题难度:中档来源:武清区一模

答案

(Ⅰ)由题意得:函数f(x)=7
3
sinxcosx+7sin2x-class="stub"5
2
=
7
3
2
sin2x+7×class="stub"1-cos2x
2
-class="stub"5
2
 
=7(
3
2
sin2x-class="stub"1
2
cos2x)+1=7sin(2x-class="stub"π
6
)+1.
令 2kπ-class="stub"π
2
≤2x-class="stub"π
6
≤2kπ+class="stub"π
2
,k∈z,可得 kπ-class="stub"π
6
≤x≤kπ+class="stub"π
3
,k∈z,
故函数的增区间为[kπ-class="stub"π
6
,kπ+class="stub"π
3
],k∈z.
令 2kπ+class="stub"π
2
≤2x-class="stub"π
6
≤2kπ+class="stub"3π
2
,k∈z,可得 kπ+class="stub"π
3
≤x≤kπ+class="stub"5π
6
,k∈z,
故函数的减区间为[kπ+class="stub"π
3
≤x≤kπ+class="stub"5π
6
],k∈z.
(Ⅱ)∵f(class="stub"a
2
-class="stub"π
6
)=1+4
3

∴7sin[2(class="stub"a
2
-class="stub"π
6
)-class="stub"π
6
]+1=7sin(a-class="stub"π
2
)+1=-7cosa+1=1+4
3

∴cosa=
-4
3
7

∵f(class="stub"a
2
-class="stub"5π
12
)=2,∴7sin[2(class="stub"a
2
-class="stub"5π
12
)-class="stub"π
6
]+1=7sin[a-π]+1=-7sina+1=2,
∴sina=-class="stub"1
7

故a为第三象限角,且 2kπ+π<a<2kπ+class="stub"5π
4
,k∈z,故 kπ+class="stub"π
2
class="stub"a
2
<kπ+class="stub"5π
8
,k∈z.
故 class="stub"a
2
是第二或第四象限角.
当 class="stub"a
2
是第二象限角时,sin class="stub"a
2
=
class="stub"1-cosa
2
=
7+4
3
14
=
2+
3
14

cos class="stub"a
2
=-
class="stub"1+cosa
2
=-
7-4
3
14
=-
2-
3
14
. 
sin(class="stub"a
2
-class="stub"π
3
)=sin class="stub"a
2
 cosclass="stub"π
3
-cosclass="stub"a
2
sinclass="stub"π
3
=
2+
3
14
×class="stub"1
2
-( -
2-
3
14
)×
3
2
=
3
3
-1
2
14

当 class="stub"a
2
是第四象限角时,sin class="stub"a
2
=-
class="stub"1-cosa
2
=-
7+4
3
14
=-
2+
3
14

cos class="stub"a
2
=
class="stub"1+cosa
2
=
7-4
3
14
=
2-
3
14
. 
sin(class="stub"a
2
-class="stub"π
3
)=sin class="stub"a
2
 cosclass="stub"π
3
-cosclass="stub"a
2
sinclass="stub"π
3
=-
2+
3
14
×class="stub"1
2
-
2-
3
14
×
3
2
=
1-3
3
2
14

更多内容推荐