已知函数f(x)=2sin(12x-π6),x∈R(1)求f(4π3)的值;(2)设α,β∈[0,π2],且α<β,f(2α+2π)=1013,f(2β+π)=65,求sin(α-β)的值.-数学

题目简介

已知函数f(x)=2sin(12x-π6),x∈R(1)求f(4π3)的值;(2)设α,β∈[0,π2],且α<β,f(2α+2π)=1013,f(2β+π)=65,求sin(α-β)的值.-数学

题目详情

已知函数f(x)=2sin(
1
2
x-
π
6
),x∈R

(1)求f(
3
)
的值;
(2)设α,β∈[0,
π
2
]
,且α<β,f(2α+2π)=
10
13
,f(2β+π)=
6
5
,求sin(α-β)的值.
题型:解答题难度:中档来源:不详

答案

(1)f(class="stub"4π
3
)=2
------------------------------------(1分)
f(2α+2π)=2sin(α+class="stub"5π
6
)=class="stub"5
13
f(2β+π)=2sin(β+class="stub"π
3
)=class="stub"6
5

α,β∈[0,class="stub"π
2
]
,得出class="stub"5π
6
≤α+class="stub"5π
6
≤class="stub"4π
3
,所以cos(α+class="stub"5π
6
)=-class="stub"12
13

class="stub"π
3
≤β+class="stub"π
3
≤class="stub"5π
6
,所以cos(β+class="stub"π
3
)=-±class="stub"4
5

因为α-β=(α+class="stub"5π
6
)-(β+class="stub"π
3
)-class="stub"π
2

所以sin(α-β)=sin[(α+class="stub"5π
6
)-(β+class="stub"π
3
)-class="stub"π
2
]
=-cos[(α+class="stub"5π
6
)-(β+class="stub"π
3
)]
--------------------------------------------------(2分)
=-[cos(α+class="stub"5π
6
)cos(β+class="stub"π
3
)+sin(α+class="stub"5π
6
)sin(β+class="stub"π
3
)]
---------------(1分)
cos(β+class="stub"π
3
)=class="stub"4
5
时,sin(α-β)=class="stub"33
65
又因为-class="stub"π
2
≤α-β≤0

所以sin(α-β)=class="stub"33
65
(舍去)-------------------------------------(1分)
cos(β+class="stub"π
3
)=-class="stub"4
5
时,因为-class="stub"π
2
≤α-β≤0
,sin(α-β)<0
所以sin(α-β)=-class="stub"63
65
-----------------------------------------------------------------------------------(1分)
(另外可以这样限角   由0≤β≤class="stub"π
2
class="stub"π
3
≤β+class="stub"π
3
≤class="stub"5π
6

又因为class="stub"1
2
<sin(β+class="stub"π
3
)=class="stub"3
5
2
2
[0,class="stub"π
2
]
β+class="stub"π
3
∈[class="stub"π
6
,class="stub"π
4
]

所以应该β+class="stub"π
3
∈[class="stub"π
2
,class="stub"5π
6
]
所以cos(β+class="stub"π
3
)=-class="stub"4
5

更多内容推荐