已知数列{xn}中,x1,x5是方程log22x-8log2x+12=0的两根,等差数列{yn}满足yn=log2xn,且其公差为负数,(1)求数列{yn}的通项公式;(2)证明:数列{xn}为等比数

题目简介

已知数列{xn}中,x1,x5是方程log22x-8log2x+12=0的两根,等差数列{yn}满足yn=log2xn,且其公差为负数,(1)求数列{yn}的通项公式;(2)证明:数列{xn}为等比数

题目详情

已知数列{xn}中,x1,x5是方程log22x-8log2x+12=0的两根,等差数列{yn}满足yn=log2xn,且其公差为负数,
(1)求数列{yn}的通项公式;
(2)证明:数列{xn}为等比数列;
(3)设数列{xn}的前n项和为Sn,若对一切正整数n,Sn<a恒成立,求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵x1,x5是方程log22x-8log2x+12=0的两根,
∴log2x1+log2x5=8,log2x1•log2x5=12,
∵等差数列{yn}满足yn=log2xn,且其公差为负数,
∴log2x1=6,log2x5=2.
y1=log2x1=6,y5=log2x5=2,yn=7-n.
(2)∵yn=log2xn=7-n,yn+1=log2xn+1=6-n
xn+1
xn
=
26-n
27-n
=class="stub"1
2

∴数列{xn}为等比数列.
(3)Sn=
26(1-class="stub"1
2n
)
1-class="stub"1
2
=128(1-class="stub"1
2n
)<128
lim
n→∞
Sn=128

故所求a的取值范围为a≥128.

更多内容推荐