已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x).(Ⅰ)求f(x)的表达式;(Ⅱ)定义正数数列{an},a1=12,a2n+1=2anf(an)(n∈N*),数列{1a

题目简介

已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x).(Ⅰ)求f(x)的表达式;(Ⅱ)定义正数数列{an},a1=12,a2n+1=2anf(an)(n∈N*),数列{1a

题目详情

已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x).
(Ⅰ)求f(x)的表达式;
(Ⅱ)定义正数数列{an},a1=
1
2
a2n+1
=2anf(an)(n∈N*)
,数列{
1
a2n
-2}
是等比数列;
(Ⅲ)令bn=
1
a2n
-2,Sn为{bn}的前n项和,求使Sn
31
8
成立的最小n值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵sin(2α+β)=3sinβ,
∴sin2αcosβ+cos2αsinβ=3sinβsin2αcosβ=sinβ(3-cos2α)
tanβ=class="stub"sin2α
3-cos2α
=class="stub"2sinαcosα
3-2cos2α+1
=class="stub"2sinαcosα
4sin2α+2cos2α
=class="stub"tanα
2tan2α+1

f(x)=class="stub"x
2x2+1

(Ⅱ)∵
a2n+1
=2anf(n)=2an
an
2
a2n
+1
=
2
a2n
2
a2n
+1

class="stub"1
a2n+1
=1+class="stub"1
2
a2n

class="stub"1
a2n+1
-2=class="stub"1
2
(class="stub"1
a2n
-2)

∴数列{class="stub"1
a2n
-2}
是以2为首项,class="stub"1
2
为公比的等比数列.
(Ⅲ)∵bn=class="stub"1
a2n
-2na1=class="stub"1
2

Sn=
2[1-(class="stub"1
2
)
2
]
1-class="stub"1
2
=4[1-(class="stub"1
2
)
2
]

Sn>class="stub"31
8
即4[1-(class="stub"1
2
)
n
]>class="stub"31
8

(class="stub"1
2
)n<class="stub"1
32
∴n>5

∴满足Sn>class="stub"31
8
的最小n为6

更多内容推荐