已知f(x)=sinx+3cosx(x∈R).求:(1)若x∈R,求f(x)的值域,并写出f(x)的单调递增区间;(2)若x∈(-π2,π3),求f(x)的值域.-高二数学

题目简介

已知f(x)=sinx+3cosx(x∈R).求:(1)若x∈R,求f(x)的值域,并写出f(x)的单调递增区间;(2)若x∈(-π2,π3),求f(x)的值域.-高二数学

题目详情

已知f(x)=sinx+
3
cosx(x∈R).求:
(1)若x∈R,求f(x)的值域,并写出f(x)的单调递增区间;
(2)若x∈(-
π
2
π
3
)
,求f(x)的值域.
题型:解答题难度:中档来源:不详

答案

(1)由题意,f(x)=sinx+
3
cosx=2sin(x+class="stub"π
3
)

∴f(x)的值域为[-2,2],
令2kπ+class="stub"π
2
≤x+class="stub"π
3
≤2kπ-class="stub"π
2

解得2kπ-class="stub"5π
6
≤x≤2kπ+class="stub"π
6

故函数的单调递增区间为[2kπ-class="stub"5
6
π,2kπ+class="stub"1
6
π]
,k∈Z;
(2)∵x∈(-class="stub"π
2
,class="stub"π
3
)

x+class="stub"π
3
∈(-class="stub"π
6
,class="stub"2π
3
)

令t=x+class="stub"π
3
,则y=sint在(-class="stub"π
6
,class="stub"π
2
)
上递增,在(class="stub"π
2
,class="stub"2π
3
)
上递减,
f(x)>sin(-class="stub"π
6
)=-class="stub"1
2
fmax(x)=sinclass="stub"π
2
=1

∴-1<f(x)≤2,
故f(x)的值域为(-1,2].

更多内容推荐