设平面向量m=(cos2x2,3sinx),n=(2,1),函数f(x)=m•n.(Ⅰ)当x∈[-π3,π2]时,求函数f(x)的取值范围;(Ⅱ)当f(α)=135,且-2π3<α<π6时,求sin(

题目简介

设平面向量m=(cos2x2,3sinx),n=(2,1),函数f(x)=m•n.(Ⅰ)当x∈[-π3,π2]时,求函数f(x)的取值范围;(Ⅱ)当f(α)=135,且-2π3<α<π6时,求sin(

题目详情

设平面向量
m
=(cos2
x
2
3
sinx),
n
=(2,1),函数f(x)=
m
n

(Ⅰ)当x∈[-
π
3
π
2
]时,求函数f(x)的取值范围;
(Ⅱ)当f(α)=
13
5
,且-
3
<α<
π
6
时,求sin(2α+
π
3
)的值.
题型:解答题难度:中档来源:不详

答案

解析:(Ⅰ)∵
m
=(cos2class="stub"x
2
3
sinx),
n
=(2,1),
f(x)=(cos2class="stub"x
2
3
sinx)•(2,1)=2cos2class="stub"x
2
+
3
sinx

=cosx+
3
sinx+1
=2sin(x+class="stub"π
6
)+1

x∈[-class="stub"π
3
,class="stub"π
2
]
时,x+class="stub"π
6
∈[-class="stub"π
6
,class="stub"2π
3
]

-class="stub"1
2
≤sin(x+class="stub"π
6
)≤1
0≤2sin(x+class="stub"π
6
)+1≤3

∴f(x)的取值范围是[0,3];
(Ⅱ)由f(α)=2sin(α+class="stub"π
6
)+1=class="stub"13
5
,得sin(α+class="stub"π
6
)=class="stub"4
5

-class="stub"2π
3
<α<class="stub"π
6

-class="stub"π
2
<α+class="stub"π
6
<class="stub"π
3
,得cos(α+class="stub"π
6
)=class="stub"3
5

sin(2α+class="stub"π
3
)=sin[2(α+class="stub"π
6
)]
=2sin(α+class="stub"π
6
)cos(α+class="stub"π
6
)=2×class="stub"4
5
×class="stub"3
5
=class="stub"24
25

更多内容推荐