已知f(x)=sin2(ωx+π12)-3sin(ωx+π12)sin(ωx-5π12)-12(ω>0)在区间[-π6,π8]上的最小值为-1,则ω的最小值为______.-数学

题目简介

已知f(x)=sin2(ωx+π12)-3sin(ωx+π12)sin(ωx-5π12)-12(ω>0)在区间[-π6,π8]上的最小值为-1,则ω的最小值为______.-数学

题目详情

已知f(x)=sin2(ωx+
π
12
)-
3
sin(ωx+
π
12
)sin(ωx-
12
)-
1
2
(ω>0)在区间[-
π
6
π
8
]
上的最小值为-1,则ω的最小值为______.
题型:填空题难度:中档来源:不详

答案

∵ω>0,
f(x)=sin2(ωx+class="stub"π
12
)-
3
sin(ωx+class="stub"π
12
)sin(ωx-class="stub"5π
12
)-class="stub"1
2

=
1-cos(2ωx+class="stub"π
6
)
2
+
3
sin(ωx+class="stub"π
12
)cos(ωx+class="stub"π
12
)-class="stub"1
2

=
1-cos(2ωx+class="stub"π
6
)
2
+
3
2
sin(2ωx+class="stub"π
6
)-class="stub"1
2

=
3
2
sin(2ωx+class="stub"π
6
)
-class="stub"1
2
cos(2ωx+class="stub"π
6
)

=sin2ωx.
∵x∈[-class="stub"π
6
,class="stub"π
8
]

∴2ωx∈[-class="stub"ωπ
3
,class="stub"ωπ
4
]

∵f(x)在区间[-class="stub"π
6
,class="stub"π
8
]
上的最小值为-1,
-class="stub"ωπ
3
≤-class="stub"π
2
,或class="stub"ωπ
4
≥class="stub"3π
2

解得ω≥class="stub"3
2
,或ω≥6,
∴ω的最小值=class="stub"3
2

故答案为:class="stub"3
2

更多内容推荐