已知函数f(x)=cos(-x2)+sin(π-x2),x∈R.(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=2105,b=1,c

题目简介

已知函数f(x)=cos(-x2)+sin(π-x2),x∈R.(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=2105,b=1,c

题目详情

已知函数f(x)=cos(-
x
2
)+sin(π-
x
2
),x∈R

(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
2
10
5
,b=1,c=2,求△ABC的面积.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵f(x)=cos(-class="stub"x
2
)+sin(π-class="stub"x
2
)=cosclass="stub"x
2
+sinclass="stub"x
2
=
2
sin(class="stub"x
2
+class="stub"π
4
)

∴函数f(x)的最小正周期T=4π,
又由2kπ-class="stub"π
2
≤class="stub"x
2
+class="stub"π
4
≤2kπ+class="stub"π
2
,∴4kπ-class="stub"3π
2
≤x≤4kπ+class="stub"π
2
(k∈Z)

可得函数f(x)的单调递增区间为[4kπ-class="stub"3π
2
,4kπ+class="stub"π
2
](k∈Z)
.…(6分)
(Ⅱ)解法一:由f(A)=
2
10
5
及(Ⅰ)可得sin(class="stub"A
2
+class="stub"π
4
)=
2
5
5

所以cos[2(class="stub"A
2
+class="stub"π
4
)]=1-2sin2(class="stub"A
2
+class="stub"π
4
)=-class="stub"3
5

sinA=class="stub"3
5
,∴S△ABC=class="stub"1
2
bcsinA=class="stub"3
5
.…(12分)
解法二:由f(A)=
2
10
5
及(Ⅰ)可得sin(class="stub"A
2
+class="stub"π
4
)=
2
5
5

sinclass="stub"A
2
+cosclass="stub"A
2
=
2
10
5

(sinclass="stub"A
2
+cosclass="stub"A
2
)2=class="stub"8
5
,即sinA=class="stub"3
5

S△ABC=class="stub"1
2
bcsinA=class="stub"3
5
.…(12分)

更多内容推荐