已知函数f(x)=x+4x+4(x≥0),数列{an}满足:a1=1,an+1=f(an),(n∈N*),数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为13的等比数列.(1)求

题目简介

已知函数f(x)=x+4x+4(x≥0),数列{an}满足:a1=1,an+1=f(an),(n∈N*),数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为13的等比数列.(1)求

题目详情

已知函数f(x)=x+4
x
+4(x≥0),数列{an}满足:a1=1,an+1=f(an),(n∈N*),数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
1
3
的等比数列.
(1)求证:数列{
an
}为等差数列;
(2)若cn=
an
•bn,求数列{cn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)∵函数f(x)=x+4
x
+4=(
x
+2)
2
(x≥0),
∴an+1=f(an)=(
an
+2)
2
,即
an+1
-
an
=2 (n∈N*).
∴数列{
an
}是以
a1
=1为首项,公差为2的等差数列.…(4分)
(2)由(Ⅰ)得:
an
=1+(n-1)2=2n-1,即 an=(2n-1)2(n∈N*).…(5分)
b1=1,当n≥2时,bn-bn-1=(class="stub"1
3
)
n-1
,∴bn=b1+( b2-b1)+( b3-b2)+(b4-b3)+…+(bn-bn-1)
=1+class="stub"1
3
+(class="stub"1
3
)
2
+…+(class="stub"1
3
)
n-1
=class="stub"3
2
(1-class="stub"1
3n
)
,因而 bn=class="stub"3
2
(1-class="stub"1
3n
)
,n∈N*.…(7分)
∴cn=
an
•bn=(2n-1)•class="stub"3
2
(1-class="stub"1
3n
)
,∴Sn=c1+c2+c3+…+cn=class="stub"3
2
[1+3+5+…+(2n-1)-(class="stub"1
3
+class="stub"3
32
+class="stub"5
33
+…+class="stub"2n-1
3n
)].
令Tn=class="stub"1
3
+class="stub"3
32
+class="stub"5
33
+…+class="stub"2n-1
3n
①,则 class="stub"1
3
Tn=class="stub"1
32
+class="stub"3
33
+class="stub"5
34
+…+class="stub"2n-3
3n
+class="stub"2n-1
3n+1
②…(9分)
①-②,得 class="stub"2
3
Tn=class="stub"1
3
+2(class="stub"1
32
+class="stub"1
33
+class="stub"1
34
+…+class="stub"1
3n
)-class="stub"2n-1
3n+1
=class="stub"1
3
+class="stub"1
3
(1-class="stub"1
3n-1
)-class="stub"2n-1
3n+1
,…(10分)
∴Tn=1-class="stub"n+1
3n

又 1+3+5+…+(2n-1)=n2.…(11分)
∴Sn=class="stub"3
2
(n2-1+class="stub"n+1
3n
).…(12分)

更多内容推荐