在△ABC中,角A、B、C的对应边分别为a、b、c,已知复数z1=3+2sinA•i,z2=sinA+(1+cosA)i(i是虚数单位),它们对应的向量依次为OZ1、OZ2,且满足OZ1∥OZ2,7(

题目简介

在△ABC中,角A、B、C的对应边分别为a、b、c,已知复数z1=3+2sinA•i,z2=sinA+(1+cosA)i(i是虚数单位),它们对应的向量依次为OZ1、OZ2,且满足OZ1∥OZ2,7(

题目详情

在△ABC中,角A、B、C的对应边分别为a、b、c,已知复数z1=3+2sinA•i,z2=sinA+(1+cosA)i(i是虚数单位),它们对应的向量依次为
OZ1
OZ2
,且满足
OZ1
OZ2
7
(c-b)=a

(1)求∠A的值;
(2)求cos(C-
π
6
)
的值.
题型:解答题难度:中档来源:不详

答案

解(1)由已知,
OZ1
=(3,2sinA),
OZ2
=(sinA,1+cosA)
,(2分)
OZ1
OZ2
,∴3(1+cosA)-2sin2A=0.
2cos2A+3cosA+1=0,(4分)
cosA=-1(舍去)或cosA=-class="stub"1
2

A∈(0,π),A=class="stub"2π
3
.(6分)

(2)∵
7
(c-b)=a

∴由正弦定理,得
7
(sinC-sinB)=sinA=
3
2
,(9分)
sinC-sin(class="stub"π
3
-C)=
21
14
3
sin(C-class="stub"π
6
)=
21
14
sin(C-class="stub"π
6
)=
7
14
,(12分)
0<C-class="stub"π
6
<class="stub"π
2
,∴cos(C-class="stub"π
6
)=
1-class="stub"1
28
=
class="stub"27
28
=
3
21
14
.(14分)

更多内容推荐