设函数f(x)=logax(a>0,a≠1),已知数列f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)当a=2时,求数列{xn•f(

题目简介

设函数f(x)=logax(a>0,a≠1),已知数列f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)当a=2时,求数列{xn•f(

题目详情

设函数f(x)=logax(a>0,a≠1),已知数列f(x1),f(x2),…,f(xn),…是公差为2的等差数列,且x1=a2
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)当a=
2
时,求数列{xn•f(xn)}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由题意得,f(x1)=logaa2=2,且d=2,
∴f(xn)=2+(n-1)•2=2n,即logaxn=2n,
xn=a2n
(Ⅱ)当a=
2
时,xn•f(xn)=2n•(
2
)2n=n•2n+1

Sn=1•22+2•23+3•24+…+n•2n+1
2Sn=1•23+2•24+…+(n-1)•2n+1+n•2n+2

两式相减得,
-Sn=22+23+24+…+2n+1-n•2n+2
=
22(1-2n)
1-2
-n•2n+2=(1-n)2n+2-4

Sn=(n-1)2n+2+4

更多内容推荐