已知数列{an}中a1=35,an=2-1an-1(n≥2,n∈N*),数列{bn},满足bn=1an-1(n∈N*).(1)求证数列{bn]是等差数列;(2)若Sn=(a1-1)•(a2-1)+(a

题目简介

已知数列{an}中a1=35,an=2-1an-1(n≥2,n∈N*),数列{bn},满足bn=1an-1(n∈N*).(1)求证数列{bn]是等差数列;(2)若Sn=(a1-1)•(a2-1)+(a

题目详情

已知数列{an}中a1=
3
5
,an=2-
1
an-1
(n≥2,n∈N*),数列{bn},满足bn=
1
an-1
(n∈N*).
(1)求证数列{bn]是等差数列;
(2)若Sn=(a1-1)•(a2-1)+(a2-1)•(a3-1)+…+(an-1)•(an+1-1),则Sn是否存在最大值或最小值?若有,求出最大值与最小值,若没有说明理由.
题型:解答题难度:中档来源:不详

答案

(1)由题意知bn=class="stub"1
an-1
,∴bn-bn-1=
an-1
an-1-1
-class="stub"1
an-1-1
=1(n∈N*),
∴数列{bn]是首项为b1=class="stub"1
a1-1
=-class="stub"5
2
,公差为1的等差数列.
(2)依题意有.an-1=class="stub"1
n-class="stub"7
2

Sn=(a1-1)•(a2-1)+(a2-1)•(a3-1)+…+(an-1)•(an+1-1)=-class="stub"2
5
-class="stub"1
n-class="stub"5
2

设函数y=class="stub"1
x-class="stub"5
2
,则函数在(class="stub"5
2
,+∞)上为减函数.
Sn在[3+∞)上是递增,且Sn<-class="stub"2
5
,故当n=3时,且Sn=-class="stub"2
5
-class="stub"1
n-class="stub"5
2
,取最小值-class="stub"12
5

而函数y=class="stub"1
x-class="stub"5
2
在(-∞,class="stub"5
2
)上也为减函数,Sn在(1,2]上是递增,且Sn>-class="stub"2
5

故当n=2时,Sn取最大值:S2=class="stub"8
5
.Sn的最大值为class="stub"8
5

更多内容推荐