已知数列{an}中a1=1,an+1=an2an+1(n∈N+).(1)求证:数列{1an}为等差数列;(2)设bn=an•an+1(n∈N+),数列{bn}的前n项和为Sn,求满足Sn>100520

题目简介

已知数列{an}中a1=1,an+1=an2an+1(n∈N+).(1)求证:数列{1an}为等差数列;(2)设bn=an•an+1(n∈N+),数列{bn}的前n项和为Sn,求满足Sn>100520

题目详情

已知数列{an}中a1=1,an+1=
an
2an+1
(n∈N+).
(1)求证:数列{
1
an
}
为等差数列;
(2)设bn=an•an+1(n∈N+),数列{bn}的前n项和为Sn,求满足Sn
1005
2012
的最小正整数n.
题型:解答题难度:中档来源:不详

答案

(1)证明:由a1=1与an+1=
an
2an+1
得an≠0,class="stub"1
an+1
=
2an+1
an
=2+class="stub"1
an

所以对∀n∈N+,class="stub"1
an+1
-class="stub"1
an
=2
为常数,
{class="stub"1
an
}
为等差数列;
(2)由(1)得class="stub"1
an
=class="stub"1
a1
+2(n-1)=2n-1

bn=anan+1=class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

所以Sn=b1+b2+…+bn=class="stub"1
2
(1-class="stub"1
3
)+class="stub"1
2
(class="stub"1
3
-class="stub"1
5
)+…+class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)
=class="stub"1
2
(1-class="stub"1
2n+1
)
=class="stub"n
2n+1

Sn>class="stub"1005
2012
class="stub"n
2n+1
>class="stub"1005
2012
,得n>class="stub"1005
2
=502class="stub"1
2

所以满足Sn>class="stub"1005
2012
的最小正整数n=503.

更多内容推荐