设等差数列{an}的前n项和为Sn,且a2=4,S5=30.数列{bn}满足b1=0,bn=2bn-1+1,(n∈N,n≥2),①求数列{an}的通项公式;②设Cn=bn+1,求证:{Cn}是等比数列

题目简介

设等差数列{an}的前n项和为Sn,且a2=4,S5=30.数列{bn}满足b1=0,bn=2bn-1+1,(n∈N,n≥2),①求数列{an}的通项公式;②设Cn=bn+1,求证:{Cn}是等比数列

题目详情

设等差数列{an}的前n项和为Sn,且a2=4,S5=30.数列{bn}满足b1=0,bn=2bn-1+1,(n∈N,n≥2),
①求数列{an}的通项公式;
②设Cn=bn+1,求证:{Cn}是等比数列,且{bn}的通项公式;
③设数列{dn}满足dn=
4
anan+1
+bn
,求{dn}的前n项和为Tn
题型:解答题难度:中档来源:不详

答案

①由a2=a1+d=4,S5=5a1+class="stub"5×4
2
d=30得:a1=2,d=2,
∴an=2+2(n-1)=2n…(4分)
②∵bn=2bn-1+1,cn=bn+1,
cn
cn-1
=
bn+1
bn-1+1
=
2(bn-1+1)
bn-1+1
=2(n≥2,n∈N)
∴{cn}是以2为公比的等比数列.
又∵c1=b1+1=1,
∴cn=bn+1=1×2n-1=2n-1,
∴bn=2n-1-1…(9分)
③∵dn=class="stub"4
anan+1
+bn=class="stub"4
2n•2(n+1)
+2n-1-1=(class="stub"1
n
-class="stub"1
n+1
)+2n-1-1,
∴Tn=[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]+(1+2+22+…+2n-1)-n
=(1-class="stub"1
n+1
)+
1-2n
1-2
-n
=2n-n-class="stub"1
n+1
(14分)

更多内容推荐