已知等比数列{an}的各项均为正数,a2=8,a3+a4=48.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log4an.证明:{bn}为等差数列,并求{bn}的前n项和Sn.-数学

题目简介

已知等比数列{an}的各项均为正数,a2=8,a3+a4=48.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log4an.证明:{bn}为等差数列,并求{bn}的前n项和Sn.-数学

题目详情

已知等比数列{an}的各项均为正数,a2=8,a3+a4=48.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4an.证明:{bn}为等差数列,并求{bn}的前n项和Sn
题型:解答题难度:中档来源:西城区二模

答案

(Ⅰ)设等比数列{an}的公比为q,依题意 q>0.
∵a2=8,a3+a4=48,∴a1q=8,a1q2+a1q3=48
两式相除得 q2+q-6=0,
解得 q=2,舍去 q=-3.
a1=
a2
q
=4

∴数列{an}的通项公式为 an=a1qn-1=2n+1
(Ⅱ)证明:由(Ⅰ)得 bn=log4an=class="stub"n+1
2

bn+1-bn=class="stub"n+2
2
-class="stub"n+1
2
=class="stub"1
2

∴数列{bn}是首项为1,公差为d=class="stub"1
2
的等差数列.
Sn=nb1+
n(n-1)
2
d=
n2+3n
4

更多内容推荐