已知各项均为正数的数列{an}满足:a1+2a2+3a3+…+nann=(a1+1)an3(n∈N*)(I)求a1,a2,a3的值,猜测an的表达式并给予证明;(II)求证:sinπan≥2an;(I

题目简介

已知各项均为正数的数列{an}满足:a1+2a2+3a3+…+nann=(a1+1)an3(n∈N*)(I)求a1,a2,a3的值,猜测an的表达式并给予证明;(II)求证:sinπan≥2an;(I

题目详情

已知各项均为正数的数列{an}满足:
a1+2a2+3a3+…+nan
n
=
(a1+1)an
3
(n∈N*)

(I)求a1,a2,a3的值,猜测an的表达式并给予证明;
(II)求证:sin
π
an
2
an

(III)设数列{sin
π
anan+1
}
的前n项和为Sn,求证:
1
3
Sn
π
2
题型:解答题难度:中档来源:不详

答案

(Ⅰ)a1=2,a2=3,a3=4,猜测:an=n+1
下用数学归纳法
①当n=1时,a1=1+1=2,猜想成立;
②假设当n=k(k≥1)时猜想成立,即ak=k+1
由条件a1+2a2+3a3+…+nan=
n(an+1)an
3
a1+2a2+3a3+…+(n-1)an-1=
(n-1)(an-1+1)an-1
3
(n≥2)

两式相减得:nan=
n(an+1)an
3
-
(n-1)(an-1+1)an-1
3

则当n=k+1时,(k+1)ak+1=
(k+1)(ak+1+1)
3
-
k(ak+1)ak
3
a2k+1
-2ak+1-k(k+2)=0
∴ak+1=k+2即当n=k+1时,猜想也成立
故对一切的n∈N*,an=n+1成立
(Ⅱ)设f(x)=sinx-class="stub"2
π
x(0<x<class="stub"π
2
)

f′(x)=cosx-class="stub"2
π
=0⇒x=arccosclass="stub"2
π

由y=cosx的单调性知f(x)在(0,class="stub"π
2
]
内有且只有一个极大值点,
f(0)=f(class="stub"π
2
)=0
在(0,class="stub"π
3
)内f(x)>0

sinx>class="stub"2
π
x(0<x<class="stub"π
2
)

x=class="stub"π
an
,当n≥2
时有class="stub"π
an
∈(0,class="stub"π
2
)
,∴sinclass="stub"π
an
>class="stub"2
an

又当n=1时,class="stub"π
an
=class="stub"π
2
,∴sinclass="stub"π
an
=class="stub"2
an
sinclass="stub"π
an
≥class="stub"2
an
(n∈N*)

(Ⅲ)∵anan+1≥6,∴class="stub"1
anan+1
∈(0,class="stub"π
2
)

由(Ⅱ)可知sinclass="stub"π
anan+1
>class="stub"2
anan+1
Sn=sinclass="stub"π
2•3
+sinclass="stub"π
3•4
+…+sinclass="stub"π
(n+1)•(n+2)
>2(class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
n+1
-class="stub"1
n+2
)=2(class="stub"1
2
-class="stub"1
n+2
)≥class="stub"1
3

即对一切n∈N*Sn>class="stub"1
3

又∵在(0,class="stub"π
2
)内sinx<x
Sn=sinclass="stub"π
2•3
+sinclass="stub"π
3•4
+…+sinclass="stub"π
(n+1)•(n+2)
<π(class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
n+1
-class="stub"1
n+2
)=π(class="stub"1
2
-class="stub"1
n+2
)<class="stub"π
2

即对一切n∈N*Sn<class="stub"π
2
.∴class="stub"1
3
Sn<class="stub"π
2

更多内容推荐