已知数列{an}满足a1=4,an+1=an+p•3n+1(n∈N*,p为常数),a1,a2+6,a3成等差数列.(Ⅰ)求p的值及数列{an}的通项公式;(Ⅱ)设数列{bn}满足bn=n2an-n,证

题目简介

已知数列{an}满足a1=4,an+1=an+p•3n+1(n∈N*,p为常数),a1,a2+6,a3成等差数列.(Ⅰ)求p的值及数列{an}的通项公式;(Ⅱ)设数列{bn}满足bn=n2an-n,证

题目详情

已知数列{an}满足a1=4,an+1=an+p•3n+1(n∈N*,p为常数),a1,a2+6,a3成等差数列.
(Ⅰ)求p的值及数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=
n2
an-n
,证明:bn
4
9
题型:解答题难度:中档来源:临沂二模

答案

(Ⅰ)因为a1=4,an+1=an+p•3n+1
所以a2=a1+p•31+1=3p+5a3=a2+p•32+1=12p+6
因为a1,a2+6,a3成等差数列,所以2(a2+6)=a1+a3,
即6p+10+12=4+12p+6,所以p=2.
依题意,an+1=an+2•3n+1
所以当n≥2时,a2-a1=2•31+1a3-a2=2•32+1
an-1-an-2=2•3n-2+1an-an-1=2•3n-1+1
相加得an-a1=2(3n-1+3n-2+…+32+3)+n-1
所以an-a1=2
3(1-3n-1)
1-3
+(n-1)

所以an=3n+n
当n=1时,a1=31+1=4成立,
所以an=3n+n.                            
(Ⅱ)证明:因为an=3n+n,所以bn=
n2
(3n+n)-n
=
n2
3 n

因为bn+1-bn=
(n+1)2
3n+1
-
n2
3n
=
-2n2+2n+1
3n+1
,(n∈N*).
若-2n2+2n+1<0,则n>
1+
3
2
,即n≥2时,bn+1<bn.
又因为b1=class="stub"1
3
b2=class="stub"4
9
,所以bn≤class="stub"4
9

更多内容推荐