已知函数f(x)对任意x∈R都有f(x)+f(1-x)=12(1)求f(12),f(1n)+f(n-1n)的值;(2)若数列{an}满足an=f(0)+f(1n)+f(2n)+…+f(n-1n)+f(

题目简介

已知函数f(x)对任意x∈R都有f(x)+f(1-x)=12(1)求f(12),f(1n)+f(n-1n)的值;(2)若数列{an}满足an=f(0)+f(1n)+f(2n)+…+f(n-1n)+f(

题目详情

已知函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
),f(
1
n
)+f(
n-1
n
)的值;
(2)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),求数列{an}的通项公式;
(3)设bn=
4
4an-1
(n∈N+),cn=bnbn+1,求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(1)在f(x)+f(1-x)=class="stub"1
2
中,
令x=class="stub"1
2
,可得f(class="stub"1
2
)+f(class="stub"1
2
)=class="stub"1
2
,所以f(class="stub"1
2
)=class="stub"1
4

令x=class="stub"1
n
,可得f(class="stub"1
n
)+f(class="stub"n-1
n
)=class="stub"1
2

(2)an=f(0)+f(class="stub"1
n
)+f(class="stub"2
n
)+…+f(class="stub"n-1
n
)+f(1),又可以写成
an=f(1)+f(class="stub"n-1
n
)+f(class="stub"n-2
n
)+…+f(class="stub"1
n
)+f(0),
两式相加得,2an=[f(0)+f(1)]+[f(class="stub"1
n
)+f(class="stub"n-1
n
)]+…[f(1)+f(0)]
=(n+1)[f(0)+f(1)]=class="stub"n+1
2

∴an=class="stub"n+1
4

(3)bn=class="stub"4
4an-1
=class="stub"4
n
,cn=bnbn+1=class="stub"4
n
•class="stub"4
n+1
=16(class="stub"1
n
-class="stub"1
n+1


∴Tn=16[(class="stub"1
1
-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)
+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]=16(1-class="stub"1
n+1
)=class="stub"16n
n+1

更多内容推荐