已知数列{an}的前n项和是Sn,且Sn+12an=1(n∈N+)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log13(1-Sn+1)(n∈N+),令Tn=1b1b2+1b2b3+…+1bnbn+

题目简介

已知数列{an}的前n项和是Sn,且Sn+12an=1(n∈N+)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log13(1-Sn+1)(n∈N+),令Tn=1b1b2+1b2b3+…+1bnbn+

题目详情

已知数列{an}的前n项和是Sn,且Sn+
1
2
an=1(n∈N+)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log
1
3
(1-Sn+1)(n∈N+)
,令Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求Tn
题型:解答题难度:中档来源:滨州一模

答案

(Ⅰ)当n=1时,a1=S1,由S1+class="stub"1
2
a1=a1+class="stub"1
2
a1=1
,得:a1=class="stub"2
3

当n≥2时,Sn=1-class="stub"1
2
anSn-1=1-class="stub"1
2
an-1

Sn-Sn-1=class="stub"1
2
(an-1-an)
,即an=class="stub"1
2
(an-1-an)

所以an=class="stub"1
3
an-1(n≥2)

a1=class="stub"2
3
≠0
,∴
an
an-1
=class="stub"1
3

故数列{an}是以class="stub"2
3
为首项,class="stub"1
3
为公比的等比数列.
an=a1qn-1=class="stub"2
3
•(class="stub"1
3
)n-1=2•(class="stub"1
3
)n
(n∈N*).
(Ⅱ)∵Sn+class="stub"1
2
an=1
,∴1-Sn=class="stub"1
2
an

bn=logclass="stub"1
3
(1-Sn+1)=logclass="stub"1
3
(class="stub"1
3
)n+1=n+1

class="stub"1
bnbn+1
=class="stub"1
(n+1)(n+2)
=class="stub"1
n+1
-class="stub"1
n+2

所以,Tn=class="stub"1
b1b2
+class="stub"1
b2b3
+…+class="stub"1
bnbn+1
=(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)+…+(class="stub"1
n+1
-class="stub"1
n+2
)
=class="stub"1
2
-class="stub"1
n+2
=class="stub"n
2(n+2)

更多内容推荐