已知奇函数g(x)=ax+bx2+a(a∈N*,b∈R)的定义域为R,且恒有g(x)≤12.(1)求a,b的值;(2)写出函数y=g(x)在[-1,1]上的单调性,并用定义证明;(3)讨论关于x的方程

题目简介

已知奇函数g(x)=ax+bx2+a(a∈N*,b∈R)的定义域为R,且恒有g(x)≤12.(1)求a,b的值;(2)写出函数y=g(x)在[-1,1]上的单调性,并用定义证明;(3)讨论关于x的方程

题目详情

已知奇函数g(x)=
ax+b
x2+a
(a∈N*,b∈R)
的定义域为R,且恒有g(x)≤
1
2

(1)求a,b的值;
(2)写出函数y=g(x)在[-1,1]上的单调性,并用定义证明;
(3)讨论关于x的方程g(x)-t=0(t∈R)的根的个数.
题型:解答题难度:中档来源:不详

答案

(1)∵g(x)为奇函数且函数的定义域为R,
∴a>0且g(0)=class="stub"b
a
=0
∴b=0,故有g(x)=class="stub"ax
x2+a

g(x)≤class="stub"1
2
恒成立即class="stub"ax
x2+a
≤class="stub"1
2
恒成立
整理可得,x2-2ax+a≥0恒成立
∴△=4a2-4a≤0
解可得,0<a≤1
∵a∈N*
∴a=1
(2)g(x)在[-1,1]上单调递增,证明如下
z证明:由(1)可得,g(x)=class="stub"x
x2+1
,x∈[-1,1]
设0≤x1<x2≤1
则g(x1)-g(x2)=
x1
x12+1
-
x2
x22+1

=
x1(x22+1)-x2(x12+1)
(x12+1)(x22+1)

=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)

∵0≤x1<x2≤1
∴x1-x2<0,1-x1x2>0,1+x12>0,1+x22>0
则g(x1)-g(x2)=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
<0
即g(x1)<g(x2)
∴g(x)在[0,1]上单调递增
根据奇函数对称区间上的单调性一致可知,且g(0)=0,则可得g(x)在[-1,0)上单调递增
综上可得,g(x)在[-1,1]上单调递增
(3)由(2)可得,-class="stub"1
2
≤g(x)≤class="stub"1
2

①当t>class="stub"1
2
或t<-class="stub"1
2
时,方程g(x)-t=0没有实数根
②当-class="stub"1
2
≤t≤class="stub"1
2
时,方程g(x)-t=0有1根实数根

更多内容推荐