在数列{an}中,如果对任意的n∈N*,都有an+2an+1-an+1an=λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题:①若数列{Fn}满足F1=1,F2=1,Fn=F

题目简介

在数列{an}中,如果对任意的n∈N*,都有an+2an+1-an+1an=λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题:①若数列{Fn}满足F1=1,F2=1,Fn=F

题目详情

在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=λ(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题:
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=3•2n-1,则数列{an}是比等差数列,且比公差λ=0;
③等比数列一定是比等差数列,等差数列一定不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是______.
题型:填空题难度:中档来源:房山区二模

答案

①由题意知,数列{Fn}为斐波那契数列{Fn},
an+2
an+1
-
an+1
an
=
an+1+an
an+1
-
an+an-1
an
≠常数,不满足比等差数列的定义,故①正确;
②若an=3•2n-1,则
an+2
an+1
-
an+1
an
=
3•2n+1
3•2n
-
3•2n
3•2n-1
=2-2
=0,满足比等差数列的定义,故②正确;
③等比数列都有
an+2
an+1
-
an+1
an
=0,满足比等差数列的定义,若等差数列为an=1,则有
an+2
an+1
-
an+1
an
=0,故③不正确;
④如果{an}是等差数列,{bn}是等比数列,设an=n,bn=2n,
an+2
an+1
-
an+1
an
=
(n+2)•2n+2
(n+1)•2n+1
-
(n+1)•2n+1
n•2n
=
2(n+2)
n+1
-
2(n+1)
n
=-class="stub"2
n(n+1)
≠常数,不满足比等差数列的定义,故④不正确;
故答案为:①②

更多内容推荐