对于函数f(x)=lg|x-2|+1,有如下三个命题:①f(x+2)是偶函数;②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x+2)-f(x)在区间(2,+∞)上是增函数

题目简介

对于函数f(x)=lg|x-2|+1,有如下三个命题:①f(x+2)是偶函数;②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x+2)-f(x)在区间(2,+∞)上是增函数

题目详情

对于函数f(x)=lg|x-2|+1,有如下三个命题:
①f(x+2)是偶函数;
②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;
③f(x+2)-f(x)在区间(2,+∞)上是增函数.
其中正确命题的序号是______.(将你认为正确的命题序号都填上)
题型:填空题难度:中档来源:不详

答案

∵f(x)=lg|x-2|+1,
∴f(x+2)=lg|x+2-2|+1=lg|x|+1是偶函数,
故①正确;
∵f(x)=lg|x-2|+1=
lg(x-2)+1,x>2
lg(2-x),x<2

∴f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数,
故②正确;
∵f(x)=lg|x-2|+1,
f(x+2)=lg|x+2-2|+1=lg|x|+1,
∴f(x+2)-f(x)=lg|x|-lg|x-2|=lg|class="stub"x
x-2
|=lg|1+class="stub"2
x-2
|在区间(2,+∞)上是减函数,
故③不正确.
故答案为①,②.

更多内容推荐