已知函数f(x)=(x2﹣3x+3)ex,设t>﹣2,f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)试判断m,n的大小并说明理由;(3)求证

题目简介

已知函数f(x)=(x2﹣3x+3)ex,设t>﹣2,f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)试判断m,n的大小并说明理由;(3)求证

题目详情

已知函数f(x)=(x2﹣3x+3)ex,设t>﹣2,f(﹣2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;
(2)试判断m,n的大小并说明理由;
(3)求证:对于任意的t>﹣2,总存在x0(﹣2,t),满足=,并确定这样的x0的个数.
题型:解答题难度:偏难来源:月考题

答案

解:(1)因为f′(x)=(2x﹣3)ex+(x2﹣3x+3)ex,
由f′(x)>0x>1或x<0,
由f′(x)<00<x<1,
∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
要使函数f(x)在[﹣2,t]上为单调函数,则﹣2<t≤0,
(2)因为函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,
所以f(x)在x=1处取得极小值e,
又f(﹣2)=13e﹣2<e,
所以f(x)在[2,+∞)上的最小值为f(﹣2),
从而当t>﹣2时,f(﹣2)<f(t),即m<n,
(3)证:∵ ,
 ,即为x02﹣x0= 
令g(x)=x2﹣x﹣ 
从而问题转化为证明方程g(x)= =0在(﹣2,t)上有解并讨论解的个数,因为g(﹣2)=6﹣ (t﹣1)2=﹣ ,
g(t)=t(t﹣1)﹣ = 
所以当t>4或﹣2<t<1时,g(﹣2)·g(t)<0,
所以g(x)=0在(﹣2,t)上有解,且只有一解,
当1<t<4时,g(﹣2)>0且g(t)>0,
但由于g(0)=﹣ <0,所以g(x)=0在(﹣2,t)上有解,且有两解,
当t=1时,g(x)=x2﹣x=0,解得x=0或1,
所以g(x)=0在(﹣2,t)上有且只有一解,
当t=4时,g(x)=x2﹣x﹣6=0,
所以g(x)=0在(﹣2,t)上也有且只有一解,
综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),
满足  ,
且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,
当1<t<4时,有两个x0适合题意.

更多内容推荐