设函数f(x)=sinx-3cosx+x+1.(Ⅰ)求函数f(x)在x=0处的切线方程;(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,f′(B)=3且a+c=2,求边长b的最小值.-数学

题目简介

设函数f(x)=sinx-3cosx+x+1.(Ⅰ)求函数f(x)在x=0处的切线方程;(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,f′(B)=3且a+c=2,求边长b的最小值.-数学

题目详情

设函数f(x)=sinx-
3
cosx+x+1

(Ⅰ)求函数f(x)在x=0处的切线方程;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,f′(B)=3且a+c=2,求边长b的最小值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)当x=0时,f(0)=1-
3
,则切点为(0,1-
3

f′(x)=cosx+
3
sinx+1
,∴f′(0)=2
∴函数f(x)在x=0处的切线方程为y-(1-
3
)=2(x-0),即y=2x+(1-
3
);
(Ⅱ)由(Ⅰ)f′(B)=2sin(B+class="stub"π
6
)+1=3,即sin(B+class="stub"π
6
)=1,∴B=class="stub"π
3

由余弦定理可得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac=4-3ac≥4-3•(class="stub"a+c
2
)2
=4-3=1
当且仅当a=c=1时,取等号
∴b2≥1,
∵b>0,∴b≥1,
∴bmin=1.

更多内容推荐