已知数列{an}满足a1=12,an=n2n2-1an-1+n2n+1(n≥2,n∈N*),数列{bn}的前n项和Sn,满足:Sn=23(bn-1).(I)求数列{an}、{bn}的通项公式an,bn

题目简介

已知数列{an}满足a1=12,an=n2n2-1an-1+n2n+1(n≥2,n∈N*),数列{bn}的前n项和Sn,满足:Sn=23(bn-1).(I)求数列{an}、{bn}的通项公式an,bn

题目详情

已知数列{an}满足a1=
1
2
,an=
n2
n2-1
an-1+
n2
n+1
(n≥2,n∈N*),数列{bn}的前n项和Sn,满足:Sn=
2
3
(bn-1)

(I)求数列{an}、{bn}的通项公式an,bn
(II)设cn=
2
n
an
,①求数列{bncn}前n项的和Tn,②求数列
1
coscncoscn+1
前n项的和An
题型:解答题难度:中档来源:不详

答案

(I)因为an=
n2
n2-1
an-1+
n2
n+1
(n≥2,n∈N*),
所以class="stub"n+1
n
an-class="stub"n
n-1
an-1=n
,设dn=class="stub"n+1
n
an

则dn-dn-1=n(n≥2,n∈N*),d1=1,
由累加法可得:dn=
n(n+1)
2
,故an=class="stub"1
2
n2

Sn=class="stub"2
3
(bn-1)
   ①,∴Sn+1=class="stub"2
3
(bn+1-1)
   ②
②-①得Sn+1-Sn=class="stub"2
3
(bn+1-bn)
=bn+1,∴bn+1=-2bn
把n=1代入①式可得b1=-2,
bn=(-2)n
(II)由(I)可知cn=class="stub"2
n
an
=class="stub"2
n
class="stub"1
2
n2
=n
①bncn=n•(-2)n
Tn=1•(-2)+2•(-2)2+3•(-2)3+…+n•(-2)n
-2Tn=1•(-2)2+2•(-2)3+3•(-2)4+…+n•(-2)n+1
两式相减得:3Tn=1•(-2)+(-2)2+(-3)3+…+(-2)n-n•(-2)n+1
=
-2[1-(-2)N]
1-(-2)
-n•(-2)n+1
=-class="stub"2
3
[1-(-2)n]-n•(-2)n+1

故所求数列的前n项和为:Tn=-class="stub"2
9
-class="stub"3n+1
9
(-2)n+1

②∵sin1=sin[(n+1)-n]=sin(n+1)cosn-cos(n+1)sinn
class="stub"1
coscncoscn+1
=class="stub"sin1
sin1cosncos(n+1)
=
sin(n+1)cosn-cos(n+1)sinn
sin1cosncos(n+1)

=class="stub"1
sin1
[tan(n+1)-tann]

故所求数列的前n项和为:
An=class="stub"1
sin1
[(tan2-tan1)+(tan3-tan2)+…+(tan(n+1)-tann)]
=class="stub"1
sin1
[tan(n+1)-tann]

更多内容推荐