数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N*).(Ⅰ)证明:数列{2nan}是等差数列;(Ⅱ)求数列{an}的通项公式an;(Ⅲ)设bn=1n•2n+1an,求数列{bn}的前

题目简介

数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N*).(Ⅰ)证明:数列{2nan}是等差数列;(Ⅱ)求数列{an}的通项公式an;(Ⅲ)设bn=1n•2n+1an,求数列{bn}的前

题目详情

数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N*).
(Ⅰ)证明:数列{
2n
an
}是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设bn=
1
n•2n+1
an
,求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由已知可知
an+1
2n+1
=
an
an+2n
,即
2n+1
an+1
=
2n
an
+1
,即
2n+1
an+1
-
2n
an
=1

∴数列{
2n
an
}是公差为1的等差数列.
(Ⅱ)由(Ⅰ)知
2n
an
=class="stub"2
a1
+(n-1)×1=2+(n-1)×1=n+1
,∴an=
2n
n+1

(Ⅲ)由(Ⅱ)知bn=class="stub"1
n•2n+1
an=class="stub"1
n•2n+1
×
2n
n+1

bn=class="stub"1
2n(n+1)
=class="stub"1
2
(class="stub"1
n
-class="stub"1
n+1
)

∴Sn=b1+b2+…+bn=class="stub"1
2
(1-class="stub"1
2
)+class="stub"1
2
(class="stub"1
2
-class="stub"1
3
)
+…+class="stub"1
2
(class="stub"1
n
class="stub"1
n+1
)
=class="stub"1
2
[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+
+(class="stub"1
n
-class="stub"1
n+1
)]
=class="stub"n
2(n+1)

更多内容推荐